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ABSTRACT
While smartphone usage become more and more pervasive,
people start also asking to which extent such devices can be
maliciously exploited as “tracking devices”. The concern is
not only related to an adversary taking physical or remote
control of the device, but also to what a passive adversary
without the above capabilities can observe from the device
communications. Work in this latter direction aimed, for
example, at inferring the apps a user has installed on his
device, or identifying the presence of a specific user within
a network.

In this paper, we move a step forward: we investigate to
which extent it is feasible to identify the specific actions that
a user is doing on mobile apps, by eavesdropping their en-
crypted network traffic. We design a system that achieves
this goal by using advanced machine learning techniques.
We did a complete implementation of this system and run a
thorough set of experiments, which show that it can achieve
accuracy and precision higher than 95% for most of the con-
sidered actions.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
- Security and protection

Keywords
Network traffic analysis; Machine learning; Privacy; Mobile
security.
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1. INTRODUCTION
People continuously carry smartphone devices with them

and use them for daily communication activities, including
not only voice calls and SMS but also emails and social net-
work interaction. In the last years, several concerns have
been raised about the capabilities of those portable devices
to invade the privacy of the users and to become actual
“tracking devices”. Even when the adversary has no actual
control of the phone (either physical or remote control via
malicious apps) several attacks may violate the privacy of
the communications. Indeed, if the network traffic is not
encrypted, the task of an eavesdropper is simple: he can
analyze the payload reading the content of each packet.
However, many mobile apps use the Secure Sockets Layer
(SSL) – and its successor Transport Layer Security (TLS)
– as a building block for encrypted communications. Un-
fortunately there is often a gap between theory and prac-
tice, e.g., leveraging the SSL vulnerabilities of smartphone
apps [15, 16] one might run an SSL man-in-the-middle at-
tack to compromise the confidentiality of communications.

While people become more familiar with mobile technolo-
gies and their related privacy threats (also thanks to the
attention raised by the media, e.g., see the recent attention
on NSA for supposedly eavesdropping foreign governments
leaders such as Angela Merkel [29]), users start adopting
some good practices that better adapt to their privacy feel-
ing and understanding. For examples, solutions to identify
and isolate malware running on smartphones [27, 31, 36]
as well as to protect against attacks coming from the net-
work [3, 10] might significantly reduce current threats to
user privacy. Unfortunately, we believe that even adopting
such good practices would not close the door to malicious
adversaries willing to trace people. In fact, the wireless and
pervasive nature of mobile devices would still leave many
practical options for adversarial tracing. In particular, even
when such solutions are in place, the adversary can still in-
fer a significant amount of information from the properly
encrypted traffic. For example, work leveraging analysis of
encrypted traffic already highlighted the possibility of under-
standing the apps a user has installed on his device [30], or
identify the presence of a specific user within a network [32].
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This work focuses on understanding whether the user pro-
filing made through analyzing encrypted traffic can be pushed
up to understand exactly what actions the user is doing on
his phone: as concrete examples, we aim at identifying ac-
tions such as the user sending an email, receiving an email,
browsing someone profile in a social network, rather than
publishing a post or a tweet. The underlying issue we lever-
age in our work is that SSL and TLS protect the content of a
packet, while they do not prevent the detection of networks
packets patterns that instead may reveal some sensitive in-
formation about the user behavior.

An adversary may use our approach in several practical
ways to threaten the privacy of the user. In the following,
we report some possible scenarios:

• A censorship government may try to identify a dissi-
dent who spreads anti-government propaganda using
an anonymous social network account. Comparing the
time of the public posts with the time of the actions
(inferred with our method), the government can guess
the identity of that anonymous dissident.

• By tracing the actions performed by two users, and
taking into account the communication latency, an ad-
versary may guess (even if with some probability of er-
ror) whether there is a communication between them.
Multiple observations could reduce the probability of
errors.

• An adversary can build a behavioral profile of a target
victim based on the habits of the latter one (e.g., wake
up time, work time). For example, this could be used
to improve user fingerprinting methods, to infer the
presence of a particular user in a network [32], even
when he accesses the network with different type of
devices.

Contributions.
In this paper, we propose a framework to infer which par-

ticular actions the user executed on some app installed on
his mobile-phone, by only looking at the network traffic that
the phone generates. In particular, we assume the traffic is
encrypted and the adversary eavesdrops (without modifying
them) the messages exchanged between the user’s device and
the web services that he uses.

Our framework analyzes the network communications and
leverages information available in TCP/IP packets (like IP
addresses and ports), together with other information like
the size, direction (incoming/outgoing), and timing. By us-
ing an approach based on machine learning, each app that is
of interest is analyzed independently. To set up our system,
for each app we first pre-process a dataset of network pack-
ets labeled with the user actions that originated them, we
cluster them in flow typologies that represent recurrent net-
work flows, and finally we analyze them in order to create a
training set that will be used to feed a classifier. The trained
classifier will be then able to classify new traffic traces that
have never been seen before. We fully implemented our sys-
tem, and we run a thorough set of experiments to evaluate
our solution considering three very popular apps: Facebook,
Gmail, and Twitter. The results shows that it can achieve
accuracy and precision higher than 95%, for most of the
considered actions.

Organization.
The rest of this paper is organized as follows. In Section 2,

we revise the state of the art. In Section 3, we present
our framework describing all its different components. We
present the evaluation of our solution for identifying user
actions in Section 4. We discuss about possible countermea-
sures against the proposed attack in Section 5. Finally, in
Section 6 we draw some conclusions and point out ways in
which this work can be further extended.

2. RELATED WORK
Our main claim in this paper is that network traffic anal-

ysis and machine learning can be used to infer private infor-
mation about the user, i.e., the actions that he executes by
using his mobile phone, even though the traffic is encrypted.

In the literature, several works proposed to track user ac-
tivities on the web by analyzing unencrypted HTTP requests
and responses [4, 5, 28]. With this analysis it was possible to
understand user actions inferring interests and habits. How-
ever, in recent years, websites and social networks started to
use SSL/TLS encryption protocol, both for web and mobile
services. As a consequence, communications between end-
points are often encrypted and this type of analysis cannot
be performed anymore.

Different works surveyed possible attacks that can be per-
formed using traffic analysis assuming a very strong adver-
sary (e.g., a national security agency) which is able to ob-
serve all communication links [6, 26]. In [21], Liberatore et
al. evaluated the effectiveness of two traffic analysis tech-
niques based on naive Bayes and on Jaccard’s coefficient for
identifying encrypted HTTP streams. Such an attack was
outperformed by [19], where the authors presented a method
that applies common text mining techniques to the normal-
ized frequency distribution of observable IP packet sizes, ob-
taining a classifier that correctly identifies up to 97% of re-
quests. Similarly, in [25] the authors presented a support
vector machine classifier that was able to correctly identify
web pages, even when the victim used both encryption and
anonymization networks such as Tor. Finally, Cai et al. [8]
presented a web pages fingerprinting attack and proved its
effectiveness despite traffic analysis countermeasures, such
as HTTPOS [22].

Unfortunately, none of the aforementioned works was de-
signed for (or could easily be extended to) mobile devices.
In fact, all of them focus on web pages identification in desk-
top environment (in particular, in desktop browsers), where
the generated HTTP traffic strictly depends on how web
pages are designed. Conversely, mobile users mostly access
the contents through the apps installed on their devices [17].
These apps communicate with a service provider (e.g., Face-
book) through a set of APIs. An example of such differences
between desktop web browsers and mobile apps is the vali-
dation of SSL certificates [10, 16].

In [9], the authors show that despite encryption, also web
applications suffer from side-channel leakages. The system
model considered is different from our. In particular, their
focus is on web applications. On the contrary, we focus on
mobile applications.

Focusing on mobile devices, traffic analysis has been suc-
cessfully used to detect information leaks [14], to profile
users by their set of installed apps [30], and to automatically
generating network profiles for identifying Android apps in
the HTTP traffic [11]. Stober et al. [30] show that it is possi-
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ble to identify the set of apps installed on an Android device,
by eavesdropping the 3G/UMTS traffic that those apps gen-
erate. Similarly, Tongaonkar et al. in [11] introduce an auto-
matic app profiler that creates the network fingerprint of an
Android app relying on packet payload inspection. Unfortu-
nately, their solution is viable only for apps that do not use
encrypted traffic. In [37], Zhou et al. discovered three un-
expected channels of information leaks on Android: per-app
data-usage statistics, ARP information, and speaker status.
Unfortunately, the authors focused only on a specific user
action (i.e., send a tweet) without distinguish that action
from the other ones a user could perform.

None of the works mentioned in this section aim at infer-
ring and distinguish the potential user actions actions that
a user can perform on mobile apps that rely on encrypted
network traffic, which is the goal of our paper.

In the following, we briefly recall several machine learning
and data mining concepts that we use in our paper: Dy-
namic Time Warping, Hierarchical Clustering and the Ran-
dom Forest classifier. Furthermore, we point the reader to
appropriate references for a complete introduction on those
topics. Dynamic Time Warping (DTW) [24] is a useful
method to find alignments between two time-dependent se-
quences (also referred as time series) which may vary in time
or speed. This method is also used to measure the distance
or similarity between time series. In particular, this method
aims to find the alignment with minimum cost between two
sequences X and Y . This cost is also called optimal warp-
ing path and it can be consider as a distance metric. In
this paper, we will indicate the cost of an optimal warping
path with DTW (X,Y ). Hierarchical Clustering is a cluster
analysis method which seeks to build a hierarchy of clus-
ters [18]. This clustering method has the distinct advantage
that any valid measure of distance can be used. In fact, the
observations themselves are not required: all that is used is
a matrix of distances. Random Forest is an ensemble classi-
fier [7] that combines a group of weak learners called “deci-
sion trees” to form a strong learner. In practice, it combines
together the results of several decision trees trained with dif-
ferent portions of the training dataset and different subsets
of features.

3. OUR FRAMEWORK
In this section we describe our framework. In particular,

Section 3.1 introduces the pre-processing steps that allow
us to model the network traffic. Section 3.2 describes the
methodology used to build training and test datasets, and
the procedure used to classify user actions.

3.1 Network Traffic Pre-Processing
Mobile apps generally rely on SSL/TLS to securely com-

municate with peers. These protocols are built on the top
of the TCP/IP suite. The TCP layer receives encrypted
data from the above layer, it divides data into chunks if the
packets exceeds a given size. Then, for each chunk it adds a
TCP header creating a TCP segment. Each TCP segment is
encapsulated into an Internet Protocol (IP) datagram, and
exchanged with peers. A fundamental entity considered in
this paper is the traffic flow : with this term we indicate a
time ordered sequence of TCP packets exchanged between
two peers during a single TCP session. We model each net-
work flow as a set of time series: (i) a time series is obtained
by considering the bytes transported by incoming packets

only; (ii) another one is obtained by considering bytes trans-
ported by outgoing packets only; (iii) a third one is obtained
by combining (ordered by time) bytes transported by both
incoming and outgoing packets. Hence, we use this set of
time series as an abstract representation of a connection be-
tween two peers.

Before generating for each flow the corresponding set of
time series, a few pre-processing steps have to be performed.
In particular: 1) we apply a domain filtering to select only
flows belonging to the analyzed app; 2) we filter the re-
maining flows, in order to delete packets that may degrade
the precision of our approach (i.e., we filter out ACK and
retransmitted packets); 3) we limit the length of the gener-
ated time-series. In the following, we will detail these three
pre-processing steps.

Domain filtering.
The network traffic generated by an app is generally di-

rected toward a back-end infrastructure. The backend in-
frastructures might be composed by a single server, or a set
of servers. The set of servers might even be behind a load
balancer. Since we analyze each app independently, we need
to make sure that traffic generated from apps other than the
considered one (or traffic generated by the OS) do not in-
terfere with the analysis. Different methods can be used in
order to identify the app that generated each network flows.
The destination IP address is a trivial discriminating pa-
rameter. However, in case of a load balanced back-end, we
should know all the individual IP addresses that can be in-
volved in the communication. The same happens when the
back-end is composed by several components such as differ-
ent web services, databases, etc. To overcome this problem
we use another strategy: we take into consideration for fur-
ther analysis only the flows which destination IP addresses
owners have been clearly identified as related to the con-
sidered app. In the implementation of our framework, we
leverage the WHOIS protocol for this purpose, but we want
to highlight that this is only one of the possible way. Busi-
ness and other context information may be used in order
to perform the domain filtering. We also take into consid-
eration the traffic related to third parties services (such as
Akamai or Amazon) that are indeed used by several appli-
cations [33].

Packets filtering.
Due to network congestion, traffic load balancing, or other

unpredictable network behavior, IP packets can be lost, du-
plicated, or delivered out of order. TCP detects these prob-
lems, hence requesting retransmission of lost data, and re-
ordering out-of-order data. It comes out that several TCP
packets that do not carry data, may hinder the analysis pro-
cess. In the data exchange phase, for example, the receiver
sends a packet with the ACK flag set to notify the correct
reception of a chunk of data. These ACK packets are trans-
mitted in asynchronous mode so they are affected by many
factors related to round trip time of the connection link. The
order of the received packets may hinder the evaluation of
the similarity between two network flows. For this reason,
we filter out all packets retransmissions, as well as packets
marked with the ACK flag. Note that the metric that we
will use in order to measure similarity between flows (see
Section 3.2) will mitigate the consequences of missing pack-
ets. We filter out also other packets that do not bring any
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additional information helpful in characterize flows. In par-
ticular, we filter out the three way handshake executed to
open a TCP connection.

Timeout and packets interval.
Two different techniques are used to limit the length of

the generated time series: a timeout mechanism and the
specification of a packets interval. The timeout mechanism
is used to terminate the flows that did not receive any new
packet since 4.5 seconds. Indeed, it has been proved experi-
mentally that 95% of all packets arrive at most 4.43 seconds
after their predecessors [30]. The packets interval specifies
the first and the last packet to be considered. For example,
considering a flow f composed by l packets, and the interval
[x, y] with x ≤ y and y ≤ l, the corresponding time series
will be composed by y − x + 1 values that report the bytes
of the xth to the yth packet. This simple mechanism al-
lows us to focus on particular portions of the flow. The first
portion of a flow, for example, is often the more significant.
In the experimental part, we report the results for different
configurations of packets intervals, showing that the best
configuration is app dependent.

3.2 Classification of User Action
Since we use a supervised learning approach, it is nec-

essary to create a labeled dataset that describes the user
actions that we want to classify. In order to build this
dataset, we simulate a series of user actions, and for each
one we identify the flows generated after the execution of
the action itself. For each app that we analyze we focus on
actions that are significant for that particular app.

In most cases, a single user action generates a set of differ-
ent flows (i.e., not just a single one). Furthermore, different
user actions may generate different sets of flows. Our classi-
fication method is based on the detection of the sets of flows
that are distinctive of a particular user action. In order to
elicit these distinctive sets of flows, we build clusters of flows
by using an agglomerative Hierarchical Clustering method.
Similar flows will be grouped together in the same cluster,
while dissimilar flows will be assigned to different clusters.
The average distance is used as linkage criterion, while the
computation of the distance between two flows combines the
distances of the corresponding time series.

Supposing that each flow fi is decomposed into a set of n
time series {T i

1 , . . . , T
i
n}, the distance between fi and fj is

defined as:

dist(fi, fj) =

n∑
k=1

wk ×DTW (T i
k, T

j
k ),

where wk is a weight assigned to the particular time series.
Weights can be assigned in such a way to give more impor-
tance to some type of time series with respect to others. For
example, it is possible to give more weight to the time series
that represent incoming packets, and less weight to those
that represent outgoing packets.

In order to reduce the computational burden of the subse-
quent classification, a leader is elected for each cluster. Lead-
ers will be the representative flows of their clusters. Given
a cluster C containing the flows {f1, . . . , fn}, the leader is
elected by selecting the flow fi that has minimum overall

distance from the other members of the cluster, that is:

arg min
fi∈C

(
n∑

j=1

dist(fi, fj)

)
.

Clustering is executed on the set of flows that will be used
to build the training dataset. In particular, after performing
the clustering the training dataset will be composed as fol-
low. The user actions will be the instances of the datasets,
while the class of each instance is a label representing the
action. We will have one integer feature for each cluster
identified through the agglomerative clustering. The value
of each feature is determined by analyzing the flows related
to an action. Each flow f captured after the execution of
an action will be assigned to the cluster that minimizes the
distance between f and the leader of the cluster. The kth

feature will therefore indicate the number of flows that have
been assigned to the cluster Ck after the execution of that
action. For example, for the action send mail, the kth fea-
ture will be equal to 2 if there are 2 flows labeled with send
mail assigned to the cluster Ck.

Finally, we execute the classification with Random Forest
algorithm. The main idea behind the overall approach is
that different actions will “trigger” different sets of clusters.
The classification algorithm will therefore learn which are
these sets, and will be able to correctly determine the class
labels for unseen instances.

4. EXPERIMENTAL RESULTS
In order to assess the performance of our proposal, we

considered three widespread apps: Gmail, Facebook and
Twitter. We select these apps because of their high pop-
ularity [1]. Indeed, Gmail is one of the largest email ser-
vices and its Android app has over one billion downloads.
On the other hand, Facebook and Twitter are not only the
most popular Online Social Networks [2], but they also had
a leading role in the Arab spring and the Istanbul’s Taksim
Gezi Park protests (when Turkish government blocked Twit-
ter). We believe that the results of our analysis also hold for
other apps that provide similar functionalities (e.g., Yahoo
mail, WhatsApp or LinkedIn), while a thorough evaluation
of this claim is left as future work. To collect the network
traffic related to different user actions, we set up a controlled
environment. In this section we present the elements that
compose this environment (Section 4.1), the methodology
used to collect the data (Section 4.2), and the results of the
evaluation (Section 4.3).

4.1 Hardware and Network Configuration
For the evaluation of our solution, we used a Galaxy Nexus

(GT-I9250) smartphone, running the Android 4.1.2 (Jelly
bean) operative system. We enabled the “Android Debug”
option in order to allow the usage of the ADB (Android
Debug Bridge) interface via USB cable. We used a Wi-Fi
access point (U.S. Robotics USR808054) to provide wireless
connectivity to the mobile phone. Finally, we used a server
(Intel Pentium Processor dual core E5400 2.7GHz with 4
GB DDR2 RAM) with two network cards running Ubuntu
Server 11.04 LTS to route the traffic from the access point
to the Internet, and vice versa.

To eavesdrop network packets flowing through the server,
we used Wireshark software. From a Wireshark capture file,
we created a comma separated file (csv), where each row de-
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scribes a packet captured from the access point’s interface.
For every packet we reported source and destination IP ad-
dresses, ports, size in bytes and time in seconds from Unix
epoch1, protocol type and TCP/IP flags. Since the payload
is not relevant to our analysis, it has been omitted. This
data have been then used to generate the time series as ex-
plained in Section 3.1.

4.2 Dataset Collection and Analysis
For our study we considered three apps installed from the

official Android market: Gmail v4.7.2 , Facebook v3.8, and
Twitter v4.1.10. For each app, we created ten accounts that
have been divided in two different categories of users: “ac-
tive” and “passive” users. “Active” users simulated the be-
havior of users that actively use the app by sending posts,
email, tweets, surfing the various menus, etc. “Passive”
users simulated the behavior of users that passively use the
app, just by receiving messages or posts. The accounts of
both passive and active users have been configured in such a
way to have several friends/followers within the group. We
avoided to configure the accounts with actual friends or fol-
lowers, in order to avoid interference due to notifications of
external users activities that were not under our control.

A script submits the sequence of actions to the mobile
phone through the ADB commands, and it captures the
network traffic that is generated. The script records also
the execution time of each action. By using the recorded
execution time of each action, it is then possible to label the
flows extracted from the network traffic with the user action
that produced it. For each app, we choose a set of actions
that are more sensitive than others from user privacy point
of view (e.g., send an email or a message, for the reasons
we report in Section 1). The list of these actions is reported
in Table 1. We underline that we do not ignore other user
actions, but we label them as other. In such a way we have
several benefits [23]: we obtain a greater representation of
data in terms of variety and variance of examples; we re-
duce the chances of overfitting; we improve the performance
of the classifier on relevant user actions.

We collected and labeled the traffic generated by 220 se-
quences of actions for each app, where a sequence is com-
posed by 50 types of actions (for a total of 11660 examples
of actions for Gmail, 6600 for Twitter, and 10120 for Face-
book). The user action examples in the dataset was divided
in a training set and a test set. We use the training set to
train the classifier, while we use the test set to evaluate its
accuracy. We underline that to build the test set we used
accounts that have not been used to create the training set.
By using different accounts to generate the training and the
test set, it is possible to assure that the results of the clas-
sification do not depend on the specific accounts that have
been analyzed.

As explained in Section 3.1, each network flow is modeled
as a set of time series. Table 2 reports the weights and the
intervals for several configurations (“Conf.”in the table) used
to limit the length of the time series generated by each app.
We used different weights configurations, and we selected
the packets intervals by analyzing the statistical length of
the flows. In particular, the median value and the third
quartile have been used as thresholds to limit the maximum
length of the generated time series.

100:00:00 UTC, 01 January 1970

Facebook
Action Description
send message send a direct message to a friend
post user status post a status on the user’s wall
open user profile select user profile page from menu
open message select a conversation on messages page
status button select “write a post” on user’s wall
post on wall post a message on a friend’s wall
open facebook open the Facebook app

Gmail
Action Description
send mail send a new mail
reply button tap on the reply button
open chats select chats page from menu
send reply send a reply to a received mail

Twitter
Action Description
refresh home Refresh the home page
open contacts select contacts page on menu
tweet/message publish a tweet or send a message
open messages select direct messages page
open twitter open the Twitter app
open tweets select tweets page

Table 1: Description of the relevant actions for each app.

Apps Sets Weights In Out Complete

Gmail

Conf. 1 0.80 [1,4] [1,2] [1,6]
0.20 [1,6] [1,3] [1,9]

Conf. 2
0.66 [1,4] [1,2] [1,6]
0.33 [1,6] [1,3] [1,9]

Conf. 3
0.33 [1,4] [1,2] [1,6]
0.66 [1,6] [1,3] [1,9]

Facebook

Conf. 1 0.66 [1,3] [1,5] [1,7]
0.33 [1,6] [1,7] [1,12]

Conf. 2 0.33 [1,3] [1,5] [1,7]
0.66 [1,6] [1,7] [1,12]

Conf. 3
0.20 [1,3] [1,5] [1,7]
0.80 [1,6] [1,7] [1,12]

Twitter

Conf. 1 0.95 - - [7,10]
0.05 - - [1,10]

Conf. 2 0.95 - - [8,11]
0.05 - - [1,11]

Conf. 3 0.95 - - [8,10]
0.05 - - [1,10]

Table 2: Weights set configurations and packets intervals for
Gmail, Facebook and Twitter apps.

In our experiments, we used the Random forest classifier
implemented by the Python library scikit-learn2. The clas-
sifier is trained using 40 estimators (or weak learners). Each
estimator consists in a decision tree without any restrictions
on its depth limit. The number of features for each estima-
tor is equal to the the square root of the maximum number
of available features.

4.3 Classification Performance
Before considering the classification of the user actions, it

is worth discussing how to choose the number of clusters that
should be used. In order to establish a reasonable value for
this parameter, we used a validation dataset to study the
accuracy of the classification when varying the number of
clusters. Figure 1 reports the achieved results. For each
app, we therefore considered the number of clusters that
maximized the accuracy, in terms of averaged F-measure.
In the following, we report the results of the classification

2http://scikit-learn.org/
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Figure 1: Classification accuracy over number of clusters.

Actions Precision Recall F-measure
send message 1.00 1.00 1.00
post user status 1.00 0.95 0.97
open user profile 0.96 0.91 0.94
open message 0.98 1.00 0.99
status button 1.00 1.00 1.00
post on wall 1.00 0.98 0.99
open facebook 1.00 1.00 1.00
other 0.99 1.00 0.99
Average 0.99 0.98 0.99

Table 3: Classification results of Facebook actions by using Con-
figuration 3.

app by app. In particular, we discuss the average accu-
racy reached when detecting each sensitive user action, we
report detailed results for the precision, the recall and the
F-measure metrics.

4.3.1 Facebook
We focused on seven different actions that may be sen-

sitive when using the Facebook app. On average, the F-
measure is equal to 99%, with a precision and a recall of
99% and 98% respectively. Performance reached with dif-
ferent configurations of weights and packets intervals con-
straints are reported in Figure 2a. For each action at least
one of the configurations exceeds 94% of accuracy, while the
worst performing is always higher than 74%.

Table 3 reports precision, recall and F-measure reached by
using Configuration 3. We noticed that all the actions have
a precision higher 96%. The recall is higher than 95% for
all the actions but the open user profile, that reaches 91%.

4.3.2 Gmail
We analyzed four specific user actions of the Gmail app:

send mail, reply button, open chats and send reply. Figure 2b
shows the classification accuracy that has been reached. We
observe that we are able to distinguish with high accuracy
the action of sending of a new mail, from that of replying to a
previously received message, as well as the tap over the reply
button. The open chats action is instead more difficult to
distinguish. Table 4 reports precision, recall and F-measure
for different configurations of weights and packets intervals
constraints. We can observe that the action open chats (that
allows to read past chats) achieves a low precision but a high
recall.

(a) Classification accuracy of the Facebook actions.

(b) Classification accuracy of the Gmail actions.

(c) Classification accuracy of the Twitter actions.

Figure 2: Classification accuracy of Facebook, Gmail and Twit-
ter actions.

4.3.3 Twitter
During the analysis we noticed that Twitter actions may

be more difficult to classify than Gmail and Facebook ac-
tions. Indeed, different Twitter actions generate similar
time series that have in common a large portion. Only
the last three or four packets of each time series show some
difference. Nevertheless, we have been able to reach out-
standing results also for this app. In particular, we focus
on six specific user actions: refresh home, open contacts,
tweet/message, open messages, open twitter, open tweets.

On average, the F-measure is equal to 97%, with a preci-
sion and a recall of 98% and 97% respectively (see Table 5).
Performance reached are reported in Figure 2c. For each
action at least one of the configurations exceeds 96% of ac-
curacy, while the worst configuration has an accuracy in any
case higher than 91%. The action open twitter has accuracy
and recall equal to 100%, independently of the Configuration
set used for the clustering phase. As a consequence, none of
examples of the test set have been wrongly classified. Three
of the six analyzed actions are correctly classified in more
than the 99% of the cases. However, the other three actions,
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Actions Precision Recall F-measure
send mail 1.00 1.00 1.00
reply button 0.85 1.00 0.92
open chats 0.36 0.94 0.52
send reply 0.98 1.00 0.99
other 0.99 0.82 0.90
Average 0.83 0.85 0.86

Table 4: Classification results of Gmail actions reached by using
Configuration 1.

Actions Precision Recall F-measure
refresh home 0.94 0.99 0.96
open contacts 0.97 0.96 0.97
tweet/message 0.97 1.00 0.98
open messages 1.00 0.95 0.97
open twitter 1.00 1.00 1.00
open tweets 1.00 0.95 0.97
other 0.96 0.96 0.96
Average 0.98 0.97 0.97

Table 5: Classification results of Twitter actions reached by
using the Configuration 1.

open contacts, open messages and open tweets are correctly
classified in more than 95% of the cases.

5. POSSIBLE COUNTERMEASURES
Users and service providers might believe that their two

parties communications are secure if they use the right en-
cryption and authentication mechanisms. Unfortunately,
current secure communication mechanisms limit their traf-
fic encryption actions to the syntax of the transmitted data.
The semantic of the communication is not protected in any
way [20]. For this reason, it has been possible for example
to develop classifiers for TLS/SSL encrypted traffic that are
able to discriminate between applications.

The contribution of this paper was to investigate to which
extent it is feasible to identify the specific actions that a
user is doing on his mobile device, by simply eavesdropping
the device’s network traffic. While it is out of the scope
of the paper to investigate possible countermeasure to the
proposed attack, we discuss in the following some related
issues.

One common belief is that simple padding techniques may
be effective against traffic analysis approaches. However, it
has to be considered that padding countermeasures are al-
ready standardized in TLS, explicitly to “frustrate attacks
on a protocol that are based on analysis of the lengths of
exchanged messages” [12]. Nevertheless, our attack worked
against TLS encrypted traffic. More advanced techniques
have been proposed in the literature, such as traffic morph-
ing and direct target sampling [34, 35]. However, a recent
result showed that none of the existing countermeasures are
effective [13]. The intuition is that coarse information is
unlikely to be hidden efficiently, and the analysis of these
features may still allow an accurate analysis. On the light
of these results, we believe it is not trivial to propose effec-
tive countermeasures to the attack we shown in this paper.
Indeed, it is intention of the authors to highlight a problem
that is becoming even more alarming after the revelation
about the mass surveillance programs that are nowadays
adopted by governments and nation states.

6. CONCLUSIONS
We proposed a framework to analyze encrypted network

traffic and to infer which particular actions the user executed
on some apps installed on his mobile-phone. We demon-
strated that despite the use of SSL/TLS, our traffic anal-
ysis approach is an effective tool that an eavesdropper can
leverage to undermine the privacy of mobile users. With
this tool an adversary may easily learn habits of the target
users. The adversary may aggregate data of thousand users
in order to gain some commercial or intelligence advantage
against some competitor. In addition, a powerful attacker
such as a Government, could use these insights in order to
de-anonimize user actions that may be of particular interest.
We hope that this work will shed light on the possible at-
tacks that may undermine the user privacy, and that it will
stimulate researchers to work on efficient countermeasures
that can be adopted also on mobile devices.
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B. Freisleben, and M. Smith. Why eve and mallory
love android: An analysis of android ssl (in)security.
In Proceedings of ACM CCS, 2012.

[16] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous
code in the world: Validating ssl certificates in
non-browser software. In Proceedings of ACM CCS,
2012.

[17] Y. Go, D. F. Kune, S. Woo, K. Park, and Y. Kim.
Towards accurate accounting of cellular data for tcp
retransmission. In Proceedings of ACM HotMobile,
2013.

[18] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning (2nd ed.). Springer,
2009.

[19] D. Herrmann, R. Wendolsky, and H. Federrath.
Website fingerprinting: Attacking popular privacy
enhancing technologies with the multinomial
naive-bayes classifier. In Proceedings of ACM CCSW,
2009.

[20] B. Krishnamurthy. Privacy and online social networks:
Can colorless green ideas sleep furiously? IEEE
Security and Privacy, 2013.

[21] M. Liberatore and B. N. Levine. Inferring the source
of encrypted http connections. In Proceedings of ACM
CCS, 2006.

[22] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C.
Chang, and R. Perdisci. Httpos: Sealing information
leaks with browser-side obfuscation of encrypted flows.
In Proceedings of NDSS, 2011.

[23] T. M. Mitchell. Machine learning. 1997.

[24] M. Müller. Information Retrieval for Music and
Motion. Springer, 2007.

[25] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel.
Website fingerprinting in onion routing based
anonymization networks. In Proceedings of ACM
WPES, 2011.

[26] J.-F. Raymond. Traffic analysis: Protocols, attacks,
design issues, and open problems. In Designing
Privacy Enhancing Technologies. Springer, 2001.

[27] B. P. Rocha, M. Conti, S. Etalle, and B. Crispo.
Hybrid static-runtime information flow and
declassification enforcement. Information Forensics
and Security, IEEE Transactions on, 2013.

[28] F. Schneider, A. Feldmann, B. Krishnamurthy, and
W. Willinger. Understanding online social network
usage from a network perspective. In Proceedings of
ACM IMC, 2009.

[29] C. Staff. Germany: U.s. might have monitored
merkel’s phone.
http://edition.cnn.com/2013/10/23/world/

europe/germany-us-merkel-phone-monitoring/,
Oct. 2014.
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