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Abstract—Automatic fingerprinting and identification of smart-
phone apps is becoming a very attractive data gathering tech-
nique for adversaries, network administrators, investigators
and marketing agencies. In fact, the list of apps installed
on a device can be used to identify vulnerable apps for an
attacker to exploit, uncover a victim’s use of sensitive apps,
assist network planning, and aid marketing. However, app
fingerprinting is complicated by the vast number of apps
available for download, the wide range of devices they may be
installed on, and the use of payload encryption protocols such
as HTTPS/TLS. In this paper, we present a novel methodology
and a framework implementing it, called AppScanner, for the
automatic fingerprinting and real-time identification of An-
droid apps from their encrypted network traffic. To build app
fingerprints, we run apps automatically on a physical device
to collect their network traces. We apply various processing
strategies to these network traces before extracting the features
that are used to train our supervised learning algorithms. Our
fingerprint generation methodology is highly scalable and does
not rely on inspecting packet payloads; thus our framework
works even when HTTPS/TLS is employed. We built and
deployed this lightweight framework and ran a thorough set
of experiments to assess its performance. We automatically
profiled 110 of the most popular apps in the Google Play Store
and were later able to re-identify them with more than 99 %
accuracy.

1. Introduction

Smartphone and mobile device usage continues to grow
at a remarkable pace as devices become more powerful,
feature-rich and more affordable. Gartner reports that sales
of smartphones to consumers exceeded one billion units
in 2014 alone, up 28.4% over 2013 [1]. Additionally, they
report that two-thirds of mobile handsets sold in the world
were smartphones. Flurry, a mobile analytics company, re-
ports that overall app usage grew by 76% in 2014 [2].
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Smartphones are well-equipped out of the box, but users
regularly download and install add-on applications, called
apps, to introduce additional features and functionality. The
intense demand for smartphones, and rapid increase in app
usage, makes the mobile platform a prime target for any
individual or organisation looking to identify the presence of
specific apps on users’ smartphones, whether for benevolent
or malevolent reasons.

On personal computers, many techniques have been used
to identify types of network traffic, as well as the applica-
tions that generated this traffic. Nguyen and Armitage [3]
survey machine learning techniques for Internet traffic clas-
sification. Traditionally, TCP/IP traffic may be identified by
port number, since it is common for applications to use
“well-known” destination port numbers that are reserved for
each type of service. In the case of identifying multiple
sources of traffic from services that use the same port num-
ber (for example web browsing), it can sometimes suffice
to rely on the HTTP host header or destination IP address
to identify the recipient of the communication. However, in
the mobile landscape, traffic fingerprinting is complicated by
the fact that many apps communicate exclusively with their
servers by sending and receiving data using HTTP/HTTPS.
In the case where developers opt to use HTTPS, the payload
is encrypted and thus cannot be inspected to help identify
the app that the traffic originated from. Additionally, for
scalability reasons, many developers and ad networks use
content distribution networks (CDNSs) to deliver content and
provide APIs to their apps. The use of CDNs and APIs
means that more than one app may send (and receive) data
to (and from) the same IP address or IP address range,
thus frustrating app identification attempts that rely on IP
addresses.

Users typically install apps in line with their interests.
Thus, merely knowing what apps a user has installed on their
device can provide valuable profiling information about the
user [4]. This profiling information is valuable to advertisers,
governments, or rogue individuals intent on invading that
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individual’s privacy. On the other hand, the list of apps
users have installed on their devices may be very useful
to network administrators concerned with network planning,
security, or traffic engineering. We consider an actor capable
of passively monitoring network traffic or otherwise being
able to obtain network traces. We motivate our work by
outlining four concrete scenarios where app fingerprinting
and identification may be useful to such an actor.

Attackers targeting specific apps. An adversary in pos-
session of exploits (perhaps zero-day exploits) for particular
apps may use app fingerprinting to identify vulnerable apps
on a network. The adversary can build a fingerprint of a
vulnerable app (or vulnerable version of an app) “offline”
and then later use it to identify these apps in the wild. Once
vulnerable apps have been identified, the adversary may
then exploit these vulnerabilities for their own benefit. It is
particularly worrying to consider an adversary fingerprinting
and scanning for vulnerable mobile banking apps on users’
devices. By performing app fingerprinting, the adversary
increases their accuracy in targeting victims, and becomes
more discreet when attacking by not needing to “broadcast”
their attack to users who are not vulnerable.

Attackers targeting specific users. App fingerprinting
may also be used in situations where there are specific
targets. By joining a victim’s network (or merely staying
within wireless range without associating with the network),
an adversary could surreptitiously monitor and fingerprint
the victim’s traffic to identify what apps the victim was
using or had installed on his/her device. For high-profile
clients this may be highly undesirable since merely knowing
what apps the victim uses on their smartphone may be quite
significant. For example, a competitor may think it would
be interesting to the general public to know that a married
politician was using a dating/flirting app on his/her device.
The gravity of this problem is highlighted when one con-
siders the Advanced Persistent Threat (APT) context where
high-profile persons are targeted. Once a list of apps have
been identified, the adversary may then go on to obtaining
the relevant exploits to attempt to take control of the victim’s
device or data. In this scenario, app fingerprinting is used to
reduce the potential cost (in terms of both time and money)
for exploiting a victim by quickly and easily enumerating
the services that the victim uses. Presumably, the adversary
will then use the most cost-effective avenue to attack the
victim.

Network management. App fingerprinting provides
valuable data about the types of apps and usage patterns
of these apps within an organisation. In the current era of
bring-your-own-device (BYOD), this information would be
invaluable to network administrators wanting to optimize
their networks. For example, knowing the most popular
apps and their throughput and latency requirements for good
user experience, administrators could then configure their
network so that particular apps performed more efficiently.
Additionally, app fingerprinting may be used to determine
whether disallowed apps were being used on an enterprise
network. The administrator could then take appropriate ac-
tion against the offender.
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Advertising and market research. App fingerprinting
can be a valuable aid to market research. Suppose an
analytics firm wants to know the popularity of apps in a
particular location or during a particular event (e.g. during
a football match). This firm could potentially fingerprint
apps and then go into their location of interest to identify
app usage from within a crowd of users. By fingerprinting
app usage within a target population, advertisers may be
better able to build profiles of their target market, and
consequently target advertisements to users more efficiently.

1.1. Contributions

In this paper we introduce AppScanner, a framework
implementing a robust and extensible methodology for the
automatic fingerprinting and real-time identification of An-
droid apps from their network traffic, whether this traffic is
encrypted or unencrypted. We have built and tested App-
Scanner with Android devices and apps. However, due to
its modular design, AppScanner can be easily ported to
fingerprint and identify apps on other platforms such as
i0S/Windows/Blackberry. Our main contributions are the
following:

o Enumerating strategies for network traffic pre-
processing that enable accurate extraction of features
that can be reliably used to re-identify an app.
Outlining a method of obtaining perfect ground truth of
what app is responsible for each network transmission
using a novel demultiplexing strategy.

Providing a highly-scalable supervised learning frame-
work that can be used to accurately model and later
identify traffic flows from apps.

Outlining a method for real-time classification of inter-
cepted Wi-Fi traffic leveraging live packet capture.
Comparing the performance of various classification
strategies for identifying smartphone apps from
encrypted network traffic.

The rest of the paper is organised as follows: Section 2
discusses work related to traffic analysis and fingerprinting;
Section 3 outlines the design of AppScanner and how the
different components work together to fingerprint an app;
Section 4 discusses the classification strategies that were
tested; Section 5 evaluates the performance of AppScanner;
Section 6 discusses the limitations of AppScanner and high-
lights areas of future work; and finally Section 7 concludes
the paper.

2. Related Work

Traffic analysis and fingerprinting is by no means a new
area of research, and indeed much work has been done on
analysing traffic from workstations and web browsers [5].
At first glance, it may seem that traffic analysis and fin-
gerprinting of smartphone apps is a simple translation of
existing work. While there are some similarities, such as



end-to-end communication using IP addresses/ports, there
are nuances in the type of traffic sent by smartphones and
the way in which it is sent that makes traffic analysis in
the realm of smartphones distinct from traffic analysis on
traditional workstations [6][7][8]. In the remainder of this
section, we consider traditional traffic analysis approaches
on workstations (Section 2.1), and then we look at traffic
analysis on smartphones (Section 2.2).

2.1. Traditional Traffic Analysis on Workstations

Traditional analysis approaches have relied on artefacts
of the HTTP protocol to make fingerprinting easier. For ex-
ample, when requesting a web page, a browser will usually
fetch the HTML document and all corresponding resources
identified by the HTML code such as images, JavaScript
and style-sheets. This simplifies the task of fingerprinting a
web page since the attacker has a corpus of information (IP
addresses, sizes of files, number of files) about the various
resources attached to an individual document.

Many app developers, for scalability, build their app
APIs on top of content delivery networks (CDNs) such as
Akamai or Amazon AWS [9]. This reduces (on average) the
space of endpoints that apps communicate with. In the past,
it may have been useful to look at the destination IP address
of some traffic and infer the app that was sending the traffic.
Presently, requests to graph.facebook.com, for example, may
possibly be from the Facebook app but they may also be
from a wide range of apps that query the Facebook Graph
APIL. With the advent of CDNs and standard web service
APIs, more and more apps are sending their traffic to similar
endpoints and this frustrates attempts to fingerprint app
traffic based on destination IP address only.

In the literature, several works considered strong adver-
saries (e.g., governments) that may leverage traffic analysis.
Those adversaries are able to capture the network traffic
flowing through communication links [10]. Liberatore et
al. [11] showed the effectiveness of proposals aiming to
identify web-pages via encrypted HTTP traffic analysis.
Subsequently, Herman et al. [12] outperformed Liberatore et
al. by presenting a method that relies on common text min-
ing techniques to the normalized frequency distribution of
observable IP packet sizes. This method correctly classified
some 97% of HTTP requests. Similar work was proposed
by Panchenko et al. [13]. Their proposal correctly identified
web pages despite the use of onion routing techniques
such as Tor. More recently, Cai et al. [14] presented a
web page fingerprinting attack and showed its effectiveness
despite traffic analysis countermeasures (e.g., HTTPOS).
Unfortunately, these pieces of work were not designed for
smartphone traffic analysis. Indeed, the authors focus on
identifying web pages on a traditional PC and leverage the
fact that the HTTP traffic can be very unique depending on
how the web page is designed. On smartphones, although
apps communicate using HTTP, they do so usually through
text-based APIs, removing rich traffic features present in
typical HTTP web page traffic.
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2.2. Traffic Analysis on Smartphones

A number of authors have proposed different schemes
for identifying smartphone apps and smartphones them-
selves from smartphone traffic. These schemes have relied
on inspecting IP addresses and packet payloads among other
things. The methodology and framework we propose in this
paper uses IP addresses only for flow separation (i.e., not
for feature generation, as explained in Section 3) and does
not leverage any information contained in packet payloads.

Dai et al. [15] propose NetworkProfiler, an automated
approach to profiling and identifying Android apps using
dynamic methods. They use a user-interface (UI) fuzzing
technique to automatically try different execution paths in
an app, while the network traces are being monitored. They
inspect HTTP payloads and thus this technique suffers from
the fact that it only works on unencrypted traffic. Dai et al.
did not have the full ground truth of the traffic traces they
were analysing, so it is difficult to systematically quantify
how accurate NetworkProfiler was in terms of precision,
recall, and overall accuracy.

In what is probably the most directly related work,
Wang et al. [16] propose a system for identifying smart-
phone apps from encrypted 802.11 frames. They collect data
frames from target apps by running them dynamically and
training classifiers with features from this data. This work
shows promise but suffers from the fact that the authors
only test 13 arbitrarily chosen apps from eight distinct app
store categories and collect network traces for only five
minutes. Indeed, the authors discover that longer training
times have an adverse effect on accuracy when classifying
some apps with their system. Moreover, the authors use
an insufficient sample size (i.e., only 13 apps) to validate
their results. By taking into account a large set of apps,
in Section 5 (specifically Fig. 5), we show how increasing
the number of apps negatively influences classifier accuracy.
Additionally, it is not known whether Wang et al. chose that
specific set of apps because it offered good classification
performance or whether a statistically suitable set size will
yield similar good performance. The authors also do not
provide precision/recall measurements so it is difficult to
judge their system performance. Finally, it is problematic
to quantify their results, in general, since the authors have
no way to collect accurate ground truth, i.e., a labelled
dataset that is free of noise from other apps. Indeed, our
methodology calls for running a single app at a time to
reduce noise, and we still had to filter out 13% of our
raw dataset because it was noise. AppScanner solves the
aforementioned problems by going several steps further to
systematically investigate this important topic. We use 110
randomly chosen apps (from the most popular apps in the
Google Play Store) from 26 different categories and collect
network traces for 75 minutes each. We pre-process these
network traces using a novel demultiplexing technique to
obtain perfect ground truth. We examine two classification
algorithms, two feature generation approaches, and three
overall classification strategies. Finally, we identify and



validate reasons for traffic misclassification and propose
mitigation strategies.

Conti et al. [17] identify specific actions that users are
performing within their smartphone apps. They achieve this
through flow classification and supervised machine learning.
Like AppScanner, their system also works in the presence
of encrypted connections since they only leverage coarse
flow information such as packet direction and size. The
authors achieved more than 95% accuracy for most of the
considered actions. This work suffers from its specificity
in identifying discrete actions. By choosing specific actions
within a limited group of apps, Conti et al. may benefit from
the more distinctive flows that are generated. Their system
does not scale well since a manual approach was taken when
choosing and fingerprinting actions. Indeed, the authors had
to choose a subset of apps and a subset of actions within
those apps to train their classifiers on. AppScanner is differ-
ent in that it has a less specific classification aim (identifying
entire apps) and it is highly scalable since fingerprints can
be built for any app automatically.

Stober et al. [18] propose a scheme for fingerprinting
entire devices by identifying device-specific traffic patterns.
They contend that 70% of smartphone traffic belongs to
background activities happening on the device and that this
can be leveraged to create a fingerprint. The authors posit
that 3G transmissions can be realistically intercepted and
demodulated to obtain side channel information from a
transmission such as the amount of transmitted data and the
timing. They leverage ‘bursts’ of data to generate features
since they cannot analyse the TCP payload directly. Using
supervised learning algorithms, the authors build a model
of the traffic they want to fingerprint. This model is then
capable of identifying similar bursts of data at a later time.
The authors conclude that using approximately 15 minutes
of captured traffic can result in a classification accuracy of
over 90%. This work is similar to AppScanner in that they
both leverage bursts of traffic to generate fingerprints. How-
ever, AppScanner is different because we leverage bursts to
identify a single specific app at a time, and are not able to
take advantage of the rich information that is present when
leveraging multiple interleaved traffic bursts to gain a more
unique fingerprint. Additionally, Stober et al. [18] need 6
hours of training and 15 minutes of monitoring to achieve
reliable fingerprint matching, while AppScanner uses 75
minutes of captured traffic per app for training (which can
be done on the attacker’s own device) and can then classify
unknown traffic in real-time.

3. System Design

The main idea underpinning AppScanner is the focus
on traffic flows from an app that can be used to identify
that app. Traffic flows from apps may be interactive or non-
interactive; that is, they may be generated with or with-
out user interaction. A newsreader app may generate non-
interactive traffic flows if it polls a server in the background
for the latest news. Interactive traffic flows are generated
by user action such as launching an app or navigating the

442

app’s user interface. For our fingerprinting and identifica-
tion methodology, we focused primarily on interactive app
traffic. Our main design goals were:

To develop a highly-scalable framework that could be
used to fingerprint and identify smartphone apps.

To ensure that models for new or updated apps could
be built in an automated way and added to the system.
To ensure that the models were portable, i.e., they
could be built and reused in a new deployment without
suffering a penalty for retraining.

To deliver a system that could perform real-time (or
near real-time) classification of flows as they were
observed on a network.

3.1. Definitions

Before going any further, we define some terms used later
in the paper and explain other key concepts central to the
AppScanner framework.

Burst - A burst is the group of all network packets
(irrespective or source or destination address) occurring to-
gether that satisfies the condition that the most recent packet
occurs within a threshold of time, the burst threshold, of the
previous packet. That is, packets are grouped temporally
and a new group is created only when no new packets have
arrived within the amount of time set as the burst threshold.
This is visually depicted in the Traffic Burstification section
of Fig. 1, where we can see Burst A and Burst B separated
by the burst threshold. We use the concept of a burst to
logically divide the network traffic into discrete, manageable
portions, which can then be further processed. The concept
of a burst was previously used by Stober et al. [18] and is
used similarly here.

Flow - A flow is a sequence of packets (within a burst)
with the same destination IP address and port number.
That is, within a flow, all packets will either be going to
(or coming from) the same destination IP address/port.
Flows are not to be confused with TCP sessions. A flow
ends at the end of a burst, while a TCP session can
span multiple bursts. Thus, flows typically last for a few
seconds, while TCP sessions can continue indefinitely.
AppScanner leverages flows instead of TCP sessions to
achieve real-time/nearer-to-real-time classification. From
the Flow Separation section of Fig. 1, we can see that a
burst may contain one or more flows. Flows may overlap
in a burst if a single app, App X, initiates TCP sessions
in quick succession or if another app, App Y, happens
to initiate a TCP session at the same time as App X.
We explain how we accurately attribute flows to their
originating app in Section 3.3. The notion of flows has
been used previously by Conti et al. [17] and are used
similarly here.

We use supervised machine learning for pattern recog-
nition on flows. In AppScanner, the supervised learning
algorithms are provided with labelled examples of flows (or
statistical features extracted from these flows) from each
app which are then used to build models. These models can



then be used to classify unlabelled flows. The models need
to be lightweight since we need AppScanner to be deploy-
able even in environments with limited processing/memory
resources and still perform app classifications in real-time
or near real-time.

3.2. Equipment Setup

The setup used to collect network traces from apps
is shown in the Equipment Setup section of Fig. 1. The
workstation was configured to forward traffic between the
Wi-Fi access point (AP) and the Internet. To generate traffic
from which to capture our training data, we used scripts
that communicated with the target smartphone via USB
using the Android Debug Bridge (ADB). These scripts were
used to simulate user actions on the test device and thus
elicit network flows from the apps. Traffic flowing through
the workstation was captured and exported to a comma-
separated value (CSV) file with each row containing the
details of a captured packet. We collected packet details such
as time, source address, destination address, ports, packet
size, protocol and TCP/IP flags. The payload for each packet
was also collected but was not used to provide features since
it may or may not be encrypted. Our aim is for AppScanner
to be able to identify apps whether their traffic is encrypted
or unencrypted. Although physical hardware was used for
network traffic generation and capturing, this process can
be massively automated and parallelized by running apps
within Android emulators on virtual machines.

3.3. Fingerprint Making

The fingerprint making process consisted of a number
of steps that we outline in Fig. 1, and describe below.

Network Trace Capture: The Network Trace Capturing
process entailed running user simulation scripts on the hard-
ware setup. These scripts generated app launches, touches
and button presses to elicit interactive traffic from apps
which was then collected using a packet sniffer. We ran
only one app at a time to minimise ‘noise’ in the network
traces. We observed that all the apps in our test set generated
network flows when they were launched. User simulation
can be done in various ways, but we leveraged the standard
Android SDK Ul exerciser tools, monkey and monkeyrunner.
AppScanner does not leverage patterns of flows or other
such artefacts that may be emphasized in human-generated
app traffic. For this reason, we can automate the training
process (for high-scalability) using Ul exercising tools. The
use of UI automation may cause us to not obtain all of an
app’s unique flows, but the flows that are obtained would
still be real-world traffic flows that would have come from
the app if a human user were using it. For example, an
app would still check-in with its server, send standard API
queries, load online resources, and other similar tasks. In
general, the more diverse the connections an app makes,
the more distinguishing the traffic will be when used for
feature generation and the subsequent training of classifiers.
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Figure 1: Visualisation of bursts and flows within TCP/IP
traffic, and a high-level representation of the classifier train-
ing steps performed by AppScanner.



Greater coverage of all the network flows in an app may
theoretically be obtained by using advanced UI fuzzing
techniques provided by frameworks such as Dynodroid [19],
or by recruiting human participants. However, we consider
these approaches to be out of scope for this paper.

After data collection, the network traffic dumps were
filtered to include only TCP traffic that was error free.
For example, we filtered to remove packet retransmissions
that were as a result of network errors. However, these
dumps potentially contained traffic from other Android
apps running (in the background) on the smartphone
that could interfere with and taint the fingerprint making
process. In addition to the target apps, another open-source
app, Network Log [20], was installed and started on the
target device. Network Log was used to identify the app
responsible for each network flow coming from the test
device. In this way, we obtained perfect ground truth of
what flows came from what app. Using logged data from
Network Log combined with a ‘demultiplexing’ script,
all traffic that did not originate from the target app was
removed from the traffic dump for that app. At this point,
each network dump only contained error-free TCP traffic
from the target app.

Traffic Burstification and Flow Separation: The next step
was to parse the network dumps to obtain network traffic
bursts. Traffic was first discretized into bursts to obtain
ephemeral chunks of network traffic that could be sent
immediately to the next stage of AppScanner for processing.
This allows us to meet the design objective of real-time
or near real-time classification of network traffic. Falaki et
al. [21] observed that 95% of packets on smartphones “are
received or transmitted within 4.5 seconds of the previous
packet”. During our tests, we observed that setting the burst
threshold to one second instead of 4.5 seconds only slightly
increased the number of bursts seen in the network traces.
This suggested to us that network performance (in terms
of bandwidth and latency) has improved since the original
study. For this reason, we opted to use a burst threshold
of one second to favour more overall bursts and nearer-
to-real-time performance. These bursts were separated into
individual flows (as defined in Section 3.1 and depicted in
Fig. 1) using destination IP address/port information. We
enforced a minimum flow length and maximum flow length
that would be considered by AppScanner. This is simply
to ensure that AppScanner safely ignores abnormal traffic
when deployed in the real-world.

It is important to note that while destination IP addresses
were used for flow separation, they were not leveraged to
assist with app identification. We also opted to not use
information gleaned from DNS queries or flows with un-
encrypted payloads. These were deliberate design decisions
taken to understand how AppScanner would perform in the
worst case, as well as avoid the reliance on domain-specific
knowledge that frequently changes. Concretely, these addi-
tional sources of data may be considered unsuitable for the
following reasons:

o IP addresses - Destination IP addresses contacted by
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an app can change if DNS-based load-balancing/high-
availability is used. Additionally, many apps contact
similar IP addresses because they utilise the same CDN
or belong to the same developer.

DNS queries - DNS queries are not always
sent/observed due to the use of client-side DNS
caching. Also, multiple apps may send the same DNS
queries, for example, to resolve advertisement server
domain names.

Packet payloads - Many app developers are becoming
more privacy-aware and are opting to use HTTPS/TLS
to encrypt packet payloads. Thus features extracted
from TCP payloads will become less useful over time.

While the aforementioned data sources may be carefully
used to assist with app identification, we consider their use
to be out of scope for this paper and leave such analysis to
future work.

Feature Extraction and Classifier Training: Once we
obtained individual flows falling within the prescribed flow
length thresholds, features were generated from them and
used to train classifiers. Raw packet lengths from flows were
used as features, as well as the statistical properties of these
flows. We elaborate on feature generation and classification
approaches/strategies in Section 4.

3.4. Fingerprint Matching

The fingerprint matching phase follows steps similar
to those of the fingerprint making phase, up to the end
of the feature extraction step. At this point, the features
are instead passed to the pre-built models to be classified,
followed by what we call the °‘classification validation’
phase at the end. During fingerprint matching, the network
traffic capturing phase is also somewhat different, since we
may perform fingerprint matching during a live network
capture or on a saved network trace.

Network Traffic Capturing: AppScanner can work in
both online and offline mode for capturing and processing
network traffic.

e Online Mode - Network traffic from the target smart-
phone is sniffed directly from the air on a live network
using tshark (the terminal version of Wireshark) or
a similar tool and passed on to the traffic capturing
module of AppScanner by means of a tshark wrap-
per library. The traffic burstification buffer collects
the incoming network packets and passes them on to
the flow separation module as a burst whenever the
burst threshold amount of time elapses with no new
packets being seen. Thus, AppScanner performs app
identification in real-time or near real-time.

Offline Mode - A pre-collected network trace can
be fed into AppScanner for ‘batch processing’. The
network trace is parsed into bursts and passed on to
the flow separation module just as in online mode.



TCP Pre-processing and Flow Classification: The flow
separation module, upon receiving a burst of network
traffic, uses source and destination IP addresses to separate
it into flows. Before flows are passed on to the next
stage in AppScanner, they are discarded if they contain
any TCP retransmissions or other errors or if they fall
outside of the flow length thresholds. Flows containing
TCP retransmissions or other errors are discarded since
they would introduce noise into the flow that should not be
there. As mentioned before, flow length thresholds are set
to ensure that very lengthy (and most likely anomalous)
flows do not enter the system. We discuss the actual flow
length thresholds used in Section 5. Feature generation (see
Fig. 2 for an outline of how this is done) is performed on
these error-free, validated flows and the features of each
flow are passed on to the classifiers for identification. The
result of this classification is then passed to the final phase,
called classification validation.

Classification Validation: The classification validation
stage is crucial for one primary reason. Machine learning al-
gorithms will always attempt to place an unlabelled example
into the class it most closely resembles, even if the match
is not very good. Given that our classifiers will never be
trained with the universe of flows from apps, it follows that
there will be some flows presented to AppScanner which are
simply unknown or never-before-seen. If left unchecked, this
can cause an undesirable increase in the false positive (FP)
rate. Additionally, as we discuss in Section 5, some traffic
flows from different apps are very similar to each other, and
this will also cause an undesirable increase in the FP rate
of AppScanner if left unchecked.

To counteract these problems, we leverage the prediction
probability feature available in the classifiers to understand
how certain the classifier is about each of its classifica-
tions. The prediction probability is a measure reported by
a classifier that gives an indication of how confident the
classifier is about its assignment of a particular label to an
unknown sample. For example, if the classifier labelled an
unknown sample as com.facebook.katana, we would check
its prediction probability value for that classification to
determine the classifier’s confidence. If this value is below
the classification validation threshold, AppScanner will not
make a pronouncement. However, if this value exceeds the
threshold, AppScanner would report it as a match for that
particular app. In Section 5, we discuss how varying this
threshold impacts the precision, recall, and overall accuracy
of AppScanner, as well as how this affects the percentage
of total flows that the classifiers are confident enough to
classify.

4. Classifier Design

Since AppScanner is modular, it is possible to use
different machine learning algorithms with minimal ef-
fort required if modifications are made. We designed and
thoroughly tested six classification approaches as shown
in Table 1. Each approach used either a Support Vector
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Classifier (SVC) or a Random Forest Classifier. These two
classifiers were chosen because they are particularly suited
for predicting classes (in our case, apps) when trained with
the features that we extracted from network flows.

A Support Vector Classifier models training examples as
points in space, and then divides the space using hyperplanes
to give the best separation among the classes. In the case of
non-linearly separable problems, the Support Vector Classi-
fier can rely on kernel functions to project the data into a
high-dimensional feature space to make it linearly separable.
A Random Forest Classifier is an ensemble method that uses
multiple weaker learners to build a stronger learner. This
classifier constructs multiple decision trees during training
and then chooses the mode of the classes output by the
individual trees. It is also able to rank the importance of the
features that it has selected for use (as shown in Table 3).

In Table 2, we outline additional characteristics of each
of the six classification approaches that show why one would
favour a particular approach over another. The classifiers
are compared in terms of their speed of training, size of
classifier, average confidence per classifications, whether
they can measure true negatives, and whether they are robust
against out-of-order packets. In general, the Per Flow Length
Classifiers are smaller and faster to train since they have
smaller training sets (only flows of a certain length). We
include average speeds and sizes for the approaches when
trained using our dataset. Only the binary classifiers are able
to understand true negatives. Only the classifiers using statis-
tical features are robust against out-of-order packets because
the other classifiers would incorrectly assign features when
presented with swapped packets.

The features used to train the classifiers were either
the actual flow vectors of raw packet lengths or statistical
features derived from these flow vectors. Fig. 2 shows
broadly the two approaches of using flow vectors or statisti-
cal features. From the figure, the flow pre-processor simply
changes the sign (i.e., makes negative) the length of incom-
ing packets. The output of the flow pre-processor is then
passed as a (variable length) flow vector to the classifiers that
use packet lengths as features, or to the Statistical Feature
Extraction function for the other classification strategies.

Statistical Feature Extraction involves deriving 54 sta-
tistical features from each flow (regardless of flow length).
For each flow, three packet series are considered: incoming
packets only, outgoing packets only, and bi-directional traffic
(i.e. both incoming and outgoing packets). For each series
(3 in total), the following values were computed: minimum,
maximum, mean, median absolute deviation, standard de-
viation, variance, skew, kurtosis, percentiles (from 10% to
90%) and the number of elements in the series (18 in total).
These statistical features were computed using the Python
pandas libraries [22].

The features were then passed through the Feature
Scaler function, which is a min-max scaler (i.e., the
minimum and the maximum value for a specific feature
in the training set corresponds to 0 and 1 respectively).
In order to avoid the curse of dimensionality, a Feature
Selection function was used to choose the best features. The



TABLE 1: The six different classification approaches that were tested in AppScanner.

Approach # | Type of Classifier | Algorithm Features Used Number of Features Details

1 Multi-class SvC Flow vectors 7-260 Single classifier per flow length

2 Multi-class Random Forest Flow vectors 7-260 Single classifier per flow length

3 Multi-class SvC Statistical features 40 (narrowed from 54) Single large classifier with all apps
4 Multi-class Random Forest Statistical features 40 (narrowed from 54) Single large classifier with all apps
5 Binary Svc Statistical features 40 (narrowed from 54) Single classifier per app

6 Binary Random Forest Statistical features 40 (narrowed from 54) Single classifier per app

TABLE 2: Additional characteristics of the six classification approaches that would help one to determine what approach
is more suitable for their particular deployment. RF means Random Forest Classifier. Large SVC and Large RF refer to
Approaches 3 and 4 each having a Single Large Classifier. Avg. confidence per classification was determined based on the

results of our extensive tests.

Approach Per Flow SVC | Per Flow RF | Large SVC Large RF Per App SVC Per App RF
# 1 2 3 4 5 6

Speed of training Fast (2secs.) Fast (2secs.) Slow (2hrs.) Medium (1hr.) Medium (1hr.) Medium (1hr.)
Size of classifier Small (IMB) Small (IMB) Large (350MB) | Large (180MB) | Medium (35MB) | Small (4MB)
Avg. confidence per classification Medium High Low High Very high Very high
Provides true negatives No No No No Yes Yes

Robust against out-of-order packets | No No Yes Yes Yes Yes

Feature Selection function leverages the Gini Importance
metric used by a Random Forest classifier that was
run on the training set [23]. This metric relies on the
Gini impurity index which is computed during estimator
building. At the end of training, the classifier gave a
score to each feature according to its significance. At this
point, we selected only those features with a score higher
than 1%, for a total of 40 features of the original 54. In
Table 3, we report the score for each of the Top 40 features.

Approach 1-2 - Multi-Class Classification using a
Classifier Per Flow Length: These approaches involve
training a multi-class Support Vector Classifier and
a Random Forest Classifier with the features being
a vector of packet sizes from each flow. For the
Support Vector Classifier, we used an rbf kernel with
parameters gamma=0.0001, C=10000. For the Random
Forest Classifier, we used parameters criterion=gini,
max_features=None, n_estimators=150. An exhaustive
search on a wide set of hyperparameters (with 5-fold
cross-validation) was used to optimize these parameters.
The length of the feature array from a flow is equal to the
amount of packets in the flow and thus the classifier for
flow length n will be trained with n features per training
example. Only one classifier per flow length is possible
(since each training example in a classifier needs to have
the same amount of features) and thus we have up to the
maximum flow length amount of classifiers.

Approach 3-4 - Multi-Class Classification using a Single
Large Classifier: These approaches involve training a
multi-class Support Vector Classifier and a Random Forest
Classifier with the features being statistical features derived
from the vector of packet sizes from each flow. In these
approaches, each classifier is very large and contains all
the apps in the test set of apps. The parameters for the
Support Vector Classifier were kernel=linear, C=100.
For the Random Forest Classifier, we used parameters

criterion=gini,  max_features=sqrt,  n_estimators=150.
An exhaustive search on a wide set of hyperparameters
(with 5-fold cross-validation) was used to optimize these
parameters.

Approach 5-6 - Binary Classification using a Single
Classifier Per App: These approaches involve training
a binary Support Vector Classifier and a binary Random
Forest Classifier with the features being statistical features
derived from the vector of packet sizes from each flow. For
the Support Vector Classifier, we used an rbf kernel with
gamma=0.001, C=100. For the Random Forest Classifier,
we used parameters n_estimators=10. In these approaches,
each classifier was a binary classifier and was trained to
identify only one app. Since the classifiers were of a binary
nature, unlabelled flows were passed to each of the 110
classifiers in parallel when they were to be classified.

After training the classifiers, the models were saved to a
persistent state using serialization. By serializing the trained
classifiers, they could be loaded almost instantly the next
time they were used without suffering a penalty for retrain-
ing.

5. System Evaluation

In this section, we present the experiment settings and
the results of the tests that we performed on AppScanner. To
build and test our framework, we used a Motorola XT1039
(Moto G) smartphone running Android 4.4.4 (KitKat). The
smartphone was connected to the internet via a Linksys
E1700 Wi-Fi Router/AP that had its internet connection
routed through a Dell Optiplex 9020 workstation with two
network interface cards. Each app was exercised automati-
cally (using the procedure outlined in Section 3.2) in 150
rounds for a period of 75 minutes and the resulting net-
work traffic was collected using Wireshark. We built the
classifiers in Python using the scikit-learn machine learning
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Figure 2: Feature Extraction from flows - AppScanner’s two main approaches for generating features from flows for classifier

training.

TABLE 3: Table showing the percentage scores given to the
40 statistical features which exceeded the threshold of 1%.

Rank Feature Score
157 Complete Maximum 4.32%
ond Outgoing Maximum 4.15%
grd Complete Skew 3.43%
4th Outgoing Variance 3.35%
5th Outgoing Standard deviation 3.35%
6t Outgoing Kurtosis 3.01%
Tth Outgoing Skew 3.01%
gth Outgoing Median Absolute Deviation 2.99%
gth Outgoing 90" percentile 2.96%
10t Complete Mean 2.86%
11th Complete Kurtosis 2.70%
12th Outgoing Mean 2.68%
13th Complete Variance 2.62%
14th Complete Standard Deviation 2.56%
15th Complete 90" percentile 2.48%
16th Outgoing 80" percentile 2.43%
17th Complete Median Absolute Deviation 2.33%
18th Incoming Variance 2.32%
19th Incoming Skew 2.30%
20" Incoming Standard Deviation 2.24%
215t Incoming Kurtosis 2.22%
22nd Incoming Median Absolute Deviation 2.19%
237d Complete Number of packets 2.19%
24th Outgoing 70" percentile 2.11%
25th Outgoing Number of packets 2.06%
261" Incoming Number of packets 2.01%
27th Incoming Mean 1.79%
28th Incoming 30" percentile 1.79%
29th Incoming 40" percentile 1.74%
30th Incoming 60" percentile 1.65%
315t Complete 10" percentile 1.62%
32nd Complete 20" percentile 1.55%
33rd Incoming 50*" percentile 1.53%
34th Incoming 20*" percentile 1.49%
35th Complete 80%" percentile 1.48%
367 Complete 30" percentile 1.45%
37th Incoming 30*" percentile 1.38%
38th Incoming 10*" percentile 1.28%
39th Outgoing 60" percentile 1.16%
40th Incoming 80" percentile 1.09%

libraries [24]. At the end of the training process, the clas-
sifiers were serialized in a process called pickling. Pickling
is a feature provided by Python that allows the translation
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of the classifier data structures and object state into files.

The aim of the experiment was to find out how accu-
rately we could fingerprint and re-identify apps from their
interactive traffic as captured from the network. For these
tests, AppScanner was trained with interactive traffic from
110 apps. These apps were chosen at random from the 150
Top Free Apps as listed in the Google Play Store in July
2015. (Please see Table 9 in the Appendix for the list of
apps that were used to test AppScanner.)

We chose the most popular apps because we believe
that these apps represent a very large cross-section of the
total install base of apps across the world. If AppScanner
performs well on these apps, it points to the usefulness
of AppScanner as a framework for identifying apps on a
global scale. Furthermore, we used free apps because free
apps tend to contain more advertisements than paid apps
and thus would generate more advertisement traffic. Since
advertisement traffic supplied by a particular ad network
would tend to be similar, AppScanner would have a more
difficult task in classifying advertisement flows as belonging
to one app from the group of apps that use the same ad
network. Indeed, our results confirm this. For this reason,
we believe the results we obtain from AppScanner being
tested on free apps is the worst case performance figure.

5.1. Measuring AppScanner’s Performance

Before training the classifiers, we needed to choose a
suitable value for the minimum flow length that would be
considered. For this test, we chose our Per Flow Random
Forest Classifier (Approach 2) and varied the minimum
flow length threshold while keeping the maximum flow
length threshold constant at infinity. Fig. 3 shows the effect
that changing minimum flow length had on classification
accuracy. Classifier accuracy increased sharply from a flow
length of one packet to a flow length of seven packets
and remained constant (more or less) afterwards. This is
understandable since shorter flows carry less information,
and as a result, we expect the classifiers to make more errors
when classifying shorter flows. A flow length of seven is a
good choice of minimum flow length because it is the length
of the shortest “complete” flow; i.e., a flow containing a TCP
handshake (three packets) followed by an HTTP request,
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response, and acknowledgements (four packets). Note that
we do not consider TCP session termination packets in
the length of a shortest complete flow. This is because the
burst threshold will usually occur before the TCP session
termination packets, and as such they would never be a part
of a flow. For these reasons, a minimum flow length of seven
was used for the remainder of the tests. Of course, this can
be easily adjusted based on any other specific needs. The
other classification approaches yielded plots with a similar
behaviour for classifier accuracy vs. minimum flow length
and are omitted for brevity.

Using a minimum flow length of seven and an arbi-
trary maximum flow length of 260, our interactive traffic
contained 131,736 flows which was split 75%/25% for the
training/testing sets respectively. We used a maximum flow
length of 260 since this was the length of the longest flow
observed in our training data. This value can be easily
adjusted depending on the maximum flow length expected in
a typical usage scenario. We trained the classifiers with fea-
tures from the training set and their accuracy was measured
by comparing their predictions to the ground truth from the
testing set. For this first round of tests, no classification val-
idation was used. This was to aid our understanding of how
the classifiers would perform without any additional post-
processing. Fig. 4 shows the resulting confusion matrix for
our Per Flow Random Forest Classifier (Approach 2). For
brevity, we show only one confusion matrix since the other
classification approaches yielded similar plots. Furthermore,
in the confusion matrix itself, instead of showing app names,
each of the 110 apps are assigned a unique number (0-109)
on the axes. The y-axis shows the true apps responsible for
the flows, while the x-axis shows the predicted apps that
were output from the classifiers. The cells in the confusion
matrix show how well each flow was classified, with a darker
colour depicting more accurate classification.

Next we calculated precision, recall, and accuracy for
our six classification approaches. Where TP refers to the
number of true positives, FP refers to the number of false
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Figure 4: Normalized confusion matrix showing actual
classes vs. predicted classes for the Per Flow Random Forest
Classifier.

positives, FN refers to the number of false negatives, and
TN refers to the number of true negatives: precision was
calculated using the formula TP/(TP + FP), and recall
was calculated using the formula TP/(TP + FN). For
Approaches 1-4 (the multi-class classifiers), accuracy was
calculated as the total number of correct classifications
divided by the total number of classifications. Approaches
5-6 involved binary classifiers so accuracy was calculated
as (TP+TN)/(TP+ FP+ TN + FN). The results are
reported in Table 4. Without using classification validation,
AppScanner had best overall performance with Per App
Random Forest Classifiers trained on statistical features
from network flows (Approach 6). These classifiers had an
overall precision of 96.0%, recall of 82.5%, and accuracy
of 99.8% for our test set of 110 apps. Our Per App Support
Vector Classifiers (Approach 5) had comparable precision
and accuracy, but a lower recall of 64.8%. Given that
no classification validation had been used with the results
presented in Table 4, these are the worst case performance
figures that can be expected from AppScanner using these
classification approaches.

For the next round of tests, we wanted to measure the
impact that increasing the number of classes had on clas-
sification accuracy for our multi-class classifiers (Approach
1-4). We started with a set size of 10 apps which were
chosen randomly from our test set of 110 apps. The classi-
fication performance was measured. This test was repeated
50 times (with random sets of the same set size) and the
results averaged. This entire process was repeated, each
time increasing the app set size by 10, until we had the
maximum set size of 110. The result of these tests are shown
in Fig. 5. From the figure we can see that increasing the
number of apps in the classifiers causes precision, recall,
and overall accuracy of classification to decrease. This is not



TABLE 4: Table showing classifier performance for the six
classification approaches: Per Flow SVC, Per Flow Random
Forest Classifier, Single Large SVC, Single Large Random
Forest Classifier, Per App SVC, and Per App Random Forest
Classifier.

# | Approach Precision | Recall | Accuracy
1 | Per Flow SVC 77.1% 71.9% | 71.5%
2 | Per Flow Random Forest 84.4% 83.1% | 82.1%
3 | Single Large SVC 51.3% 60.2% | 42.4%
4 | Single Large Random Forest | 89.5% 85.9% | 86.9%
5 | Per App SVC 96.1% 64.8% | 99.7%
6 | Per App Random Forest 96.0% 82.5% | 99.8%
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Figure 5: Impact of the number of apps trained in the
classifiers on classifier performance for the four multi-class
classifiers. Error bars show 95% CI for the mean.

unexpected, since the accuracy of a multi-class classifier is a
function of the number of classes that an unknown input can
be matched to. What is important to note, however, is that
as the number of classes is increased, the rate of decrease in
classifier performance decreases. Thus we expect classifier
performance to eventually level off and remain constant
when the number of classes is significantly increased.

If one wanted to fingerprint the universe of apps, they
would use the Classifier Per Flow Length strategy (Ap-
proach 1-2 in Section 4). This would ensure that no single
classifier would contain a very large number of apps, since
not all apps generate flows for each flow length. For this rea-
son, we believe that scaling up AppScanner to identify the
universe of apps is feasible. Such large-scale ‘appscanning’
would not be common, though, since we believe the typical
application scenario would be to use AppScanner to target
a certain subset of apps. For example, by fingerprinting the
Top 10,000 apps, one would have a realistic coverage of all
the apps that would be seen (with a non-trivial likelihood)
on a given network. In other cases, we expect AppScanner
to be deployed to only identify very specific apps (such
as apps allowed/disallowed by company policy), in which
case the Single Classifier Per App strategy (Approach 5-6
in Section 4) would be used.
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5.2. Using Classification Validation to Improve Per-
formance

To understand the utility of the classification validation
post-processing function (as detailed in Section 3.4), we
looked at the confidence that our multi-class classifiers
reported with each of their classifications. Fig. 6 shows a his-
togram of the prediction probabilities reported by our worst
performing classifier (Single Large SVC) for the ~ 33,500
flows that were in the testing set. The prediction probability
had a mean pu = 0.18 with standard deviation 0 = 0.14.
For the vast majority of classifications, the classifier was
less than 20% certain about its decision. Indeed, we can see
from the figure that the classifier was only around 10-12%
confident for a large number of choices.

In the case where more than one apps had similar flows,
such as ad/analytics traffic or querying similar APIs, it
is understandable that the classifiers would not be very
confident in their classifications. This is so, because the class
boundaries would not be as distinct as in the case where
all apps had perfectly unique traffic. This suggests that
classification validation can be a useful strategy for improv-
ing classification performance since we can set ‘minimum
standards’ for what we will accept from the classifier as
a confident classification. By using classification validation,
we can free AppScanner from the task of making a decision
on flows that are genuinely very ambiguous to the classifier.

Table 5 summarises the (sometimes) dramatic improve-
ment in classification performance that we obtained by us-
ing classification validation. In general, the Random Forest
Classifiers outperformed the Support Vector Classifiers for
our dataset, whether a Classifier Per Flow Length or a Single
Large Classifier was used. The Random Forest Classifiers
use aggregated decision trees which, in turn, reduce bias.
Also, they are better able to handle noise since they are an
ensemble learning method. The Support Vector Classifiers
are not very confident about their predictions and indeed it
can be seen that the percentage of flows they were confi-
dent enough to classify falls off sharply as the prediction
probability threshold is increased. The overall winner is the
Single Large Random Forest Classifier (Approach 4) that
used statistical features derived from flows. We now detail
the performance of these classification approaches.

Fig. 7a shows classifier performance for our Per Flow
Length Support Vector Classifiers (Approach 1). With no
classification validation in use, precision, recall, and accu-
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Figure 7: Impact of prediction probability threshold on classifier performance.

racy was 77.1%, 71.9%, and 71.5%, respectively, with the
classifiers making a judgement on all the unlabelled flows.
By setting the prediction probability threshold to a modest
0.5, precision, recall, and accuracy increased to 95.1%,
92.4%, and 95.0% respectively with the classifiers making
judgements on just under a half (45.5%) of the unlabelled
flows. From the figure it can be seen that accuracy in excess
of 99% (accuracy of 99.1%, precision of 97.2%, recall of
92.3%) can be achieved by setting the prediction probability
threshold to 0.7. At a threshold of 0.7, however, AppScanner
will only be confident enough to make a judgement on
roughly a quarter (26.0%) of flows. At higher thresholds, the
number of flows classified falls off sharply with negligible
improvement in performance.

Fig. 7b shows classifier performance for our Per Flow
Length Random Forest Classifier (Approach 2). With no
classification validation in use, precision, recall, and accu-
racy was 84.4%, 83.1%, and 82.1% respectively. At a thresh-
old of 0.5, accuracy jumps to 94.7% and we can exceed 98%
accuracy at a threshold of 0.7, while still classifying over
71% of flows. Although the Per Flow Length Support Vector
Classifiers have a higher peak accuracy, the percentage of
flows they can classify at higher thresholds makes them
useful in only very specific circumstances.

Fig. 7c shows classifier performance for our Single Large
Support Vector Classifier (Approach 3). This is our worst
performing classifier. With no classification validation in
use, precision, recall, and accuracy was 51.3%, 60.2%, and
42.4% respectively. By tuning the prediction probability
threshold, additional performance can be squeezed from this
classifier but it comes at the detriment of percentage of flows
classified. The amount of flows classified falls off even more
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sharply than the same type of classifier used in a Per Flow
Length Classifier approach (Approach 1). At a threshold of
0.5, accuracy was less than 90% and to achieve this, the
classifier could only classify 5.9% of flows.

Fig. 7d shows classifier performance for our Single
Large Random Forest Classifier (Approach 4). This is our
best performing classifier. With no classification validation
in use, precision, recall, and accuracy was 89.5%, 85.9%,
and 86.9% respectively. At a threshold of 0.7, all three
of precision, recall, and accuracy exceeded 98%, and at a
threshold of 0.9, precision, recall, and accuracy all exceeded
99.5%. This near perfect accuracy is achieved while still
being able to classify roughly three-quarters of all flows
that were seen.

5.3. Understanding Classification Errors

Some classification approaches performed better than
others both in terms of precision/recall/accuracy as well as
percentage of flows classified when using classification val-
idation. Some of the apps themselves also performed better
than others when being classified by AppScanner. We expect
that the better performing apps are those that have traffic
flows that are very distinct from the flows of other apps.
To test this hypothesis, we analysed our Per Flow Random
Forest Classifier (Approach 2), the classifier from the group
that had overall performance somewhere in the middle (not
the best and not the worst). Table 6 shows the apps that
were most accurately classified by this classifier (without
using classification validation). We removed classification
validation for this step to get a fuller idea of the types of
flows that were being classified incorrectly. The package
air.uk.co.bbc.android.mediaplayer was perfectly classified



TABLE 5: Table summarising multi-class classifier perfor-
mance when classification validation is used.

Classification Approach Prediction Probability Threshold
Per flow SVC 0.5 0.7 0.9
Precision 95.1% 97.2% 99.7%
Recall 92.4% 92.3% 90.4%
Accuracy 95.0% 99.1% 99.6%
% Flows classified 45.5% 26.0% 3.4%
Per flow Random Forest 0.5 0.7 0.9
Precision 95.4% 98.1% 99.5%
Recall 95.0% 98.0% 99.4%
Accuracy 94.7% 98.3% 99.5%
% Flows classified 80.6% 71.3% 62.3%
Single Large SVC 0.5 0.7 0.9
Precision 79.8% 79.7% 65.0%
Recall 73.2% 70.2% 66.5%
Accuracy 89.6% 91.1% 93.0%
% Flows classified 5.9% 2.1% 0.7%
Single Large Random Forest 0.5 0.7 0.9
Precision 95.9% 98.4% 99.7%
Recall 94.9% 98.0% 99.6%
Accuracy 95.2% 98.2% 99.6%
% Flows classified 86.5% 79.4% 72.0%

TABLE 6: Best 10 Apps for classification by AppScanner.
Rank Package Name Accuracy
1% air.uk.co.bbc.android.mediaplayer 100.0%
ond com.fivestargames.slots 99.1%
grd bbc.mobile.weather 98.7%
qth me.pou.app 97.3%
5th com.machinezone.gow 97.2%
6th com.prettysimple.criminalcaseandroid 97.0%
Tth com.justeat.app.uk 95.8%
8th com.king.farmheroessaga 95.0%
9th com.playfirst.cookingdashx 94.6%
1047 com.whatsapp 92.1%

in all cases with another 15 apps exceeding a classification
accuracy of 90%. Other apps performed much worse as
shown in Table 7. None of the flows from the package
com.google.android.apps.plus were classified correctly by
AppScanner when not using classification validation. An-
other 13 apps from our test set of 110 apps performed
below the 50% mark with this setting. These apps seem to
generate flows are harder to classify and thus produce more
false positive and false negative results. To understand if this
was the case, we did an in-depth analysis of the incorrectly
classified flows to gain additional insight. With classification
validation still removed, we performed another set of tests
where AppScanner would make its best guess at what app
a flow belonged to. We did this analysis using classification
Approach 1; another approach where performance was in
the middle (not the best and not the worst). We collected
the =~ 10,000 flows (of ~ 33,500) that were classified in-
correctly (using this classification approach) and performed
manual/semi-automated analysis on them by destination IP
address.

The ~ 10, 000 incorrectly classified flows were going to
some 1,467 unique destination IP addresses. It is interesting
to note that the Top 25 of these IP addresses accounted
for more than 30% of the incorrectly classified flows. For
brevity, we report on the Top 10 destinations (for incorrectly

451

TABLE 7: Worst 10 Apps for classification by AppScanner.

Rank Package Name Accuracy
101°% com.imo.android.imoim 47.4%
10274 com.snapchat.android 41.8%
10374 com.twitter.android 41.0%
104th com.zentertain.photoeditor 40.8%
1050 com.mixradio.droid 40.3%
106th com.imangi.templerun?2 32.9%
107t com.tayu.tau.pedometer 28.6%
108th com.meetup 28.0%
109th com.google.android.apps.inbox 24.3%
110th com.google.android.apps.plus 0.0%

TABLE 8: Top 10 destinations for incorrectly labelled flows,
number of flows going to these destinations, number of
different apps sending these flows, and the type of service
at each destination.

Domain Name Flows | Apps | Type
graph.facebook.com 994 44 Standard API
googleads.g.doubleclick.net 426 16 Ads/Analytics
data.flurry.com 142 26 Ads/Analytics
googleads.g.doubleclick.net 127 5 Ads/Analytics
data.flurry.com 121 26 Ads/Analytics
android.clients.google.com 98 14 Standard API
spotlight-endpoint.appspot.com | 96 1 Standard API
api.meetup.com 70 1 App-specific API
d.appsdt.com 70 9 Ads/Analytics
d.appsdt.com 67 8 Ads/Analytics

classified flows) in Table 8. The table shows the domain
names, the amount of incorrectly labelled flows going to
each domain, the number of apps sending flows to each
domain, and the type of service running at that domain.
Note that the type of service running at a domain was
inferred by manually doing research on the domain in the
form of WHOIS queries, visiting the domain, analysing the
subdomain etc. and thus may not be perfectly accurate in
all cases.

According to Table 8, with the exception of two do-
mains, all domains in our Top 10 ‘worst classification do-
mains’ list received traffic from more than one app. The re-
mainder of these ‘multi-app’ domains served either standard
developer APIs or advertisement/analytics resources. This
supports our hypothesis that similar flows were indeed being
sent by more than one apps as a result of them contacting
the same standard web services. In this case, there is not
much that can be done to assist AppScanner to differentiate
the exact source of these network flows without leveraging
additional features. However, classification accuracy could
be improved if AppScanner were allowed to be more general
and label a flow as being advertisement/analytics/standard-
API traffic instead of naming a specific app.

6. Discussion and Future Work

AppScanner is the implementation of a novel method-
ology that leverages machine learning and traffic analysis
to automatically fingerprint and identify smartphone apps.
The smartphone landscape offers unique challenges to traffic
analysis, such as less available features and the need for



automation and high-scalability. Our classification frame-
work based on flows offers novel insights. We explore
three general classification strategies (i.e. classifier per flow
length, single classifier with all apps, and single classifier
per app) and explore and enumerate the trade-offs of each
strategy in terms of time taken to train classifier, size of
resulting classifier, and classification performance.

Our framework is able to very accurately identify apps
from their network traffic but it also has some limitations.
We discuss these limitations in Section 6.1, we compare
AppScanner to the state of the art in Section 6.2, and talk
about future work in Section 6.3.

6.1. Limitations

Table 7 shows that AppScanner was much worse at
identifying some apps such as Temple Run, Pedometer,
MeetUp, Inbox by Gmail, and Google+. This, we think, is
as a result of these apps having very generic flows of traffic.
This hypothesis is supported by Table 8, where we see
that the most incorrectly labelled flows were from multiple
apps going to similar destinations. The simple fact is that
ambiguous flows are harder to classify and AppScanner (or
any other system) would not be able to reliably differentiate
between these flows without leveraging additional features.

AppScanner was built with a single device that generated
the training and testing flows. It is possible that apps may
behave differently on different devices or different versions
of Android. It is also possible that different flavours of TCP
on different devices may cause our classifiers to misclassify
if they were trained using network traces from a differ-
ent device. We plan to test this by generating flows from
apps using various Android emulators running on virtual
machines.

6.2. Comparison with website fingerprinting meth-
ods

Since the domain of this paper is smartphone app fin-
gerprinting, and the closest related work we identified in
Section 2 focuses mainly on website fingerprinting, a di-
rect comparison between AppScanner and the related work
cannot be made. However, we validate the necessity and
utility of AppScanner by showing how the existing website
traffic analysis techniques in the literature (for which there
exists ground truth) perform below par when classifying the
smartphone app traffic from our dataset. The results of our
comparison are shown in Fig. 8.

The first group of approaches considered for the com-
parison are the ones proposed by Liberatore et al. in [11]:
a classifier leveraging the Jaccard similarity metric (i.e.,
Liberatore Jaccard) and another leveraging a Naive Bayes
classifier (i.e., Liberatore NB). Among these two classifiers,
Liberatore NB achieves the best accuracy with 50.8%. The
second group of approaches were presented by Herrmann
et al. in [12]. The difference with the proposals in this
group is that transformations are applied to the dataset:
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Figure 8: AppScanner’s accuracy compared to existing ap-
proaches from the literature. We use pt to denote the predic-
tion probability threshold used for classification validation.
RF means Random Forest Classifier.

no transformation (i.e., Herrmann Pure), Term Frequency
transformation (i.e., Herrmann TF), and Cosine Normaliza-
tion applied after a TF transformation (i.e., Herrmann Cos).
The best performance is 50.2% accuracy, achieved by the
TF transformation without the Cosine Normalization, i.e.,
Herrmann TF. Finally, the method proposed by Panchenko
et al. in [13] performed best with an accuracy of 64.5%.
As we can see from Fig. 8, this is the approach with
performance closest to ours. However, five out of six of
our classifiers outperform it, with our two best approaches
outperforming it by some 35% accuracy. Our worst four
approaches, when using classification validation (with a
modest prediction probability threshold of 0.5) outperform
Panchenko et al. by 25%-30% accuracy.

6.3. Future Work

For future work, we will examine ways of grouping
flows to more reliably determine the originating app. For
example, three flows may be ambiguous when analysed sep-
arately, but when assessed as a group, they may match a par-
ticular app that always sends three of these flows together.
We will also look at other approaches for identifying apps,
such as active network probing, which can be used to elicit
further identifying network traffic from apps. We intend
to use different modelling tools, such as Hidden Markov
Models and finite state machines, for app classification. We
also plan to improve classification accuracy by identifying
and using other features from flows, such as packet inter-
arrival time. Other readily available information such as
whether a flow always occurs within a burst with multiple
flows or whether it contains HTTPS/TLS packets can also be
leveraged to improve accuracy. Finally, we plan to examine
the extent to which app fingerprinting can be done at the
MAC layer in the presence of MAC layer encryption.



7. Conclusion

In this paper, we presented AppScanner, a framework
implementing a novel methodology for the automatic fin-
gerprinting and real-time identification of smartphone apps
from their encrypted network traffic. Our evaluation shows
that apps can indeed be identified with over 99% accuracy
even in the presence of encrypted traffic streams such as
HTTPS/TLS. We validated that multi-class classifiers can
be used to fingerprint and identify a wide variety of apps
in a single classifier. We also showed that binary classifiers
can also be used to obtain very high precision and overall
accuracy in the case where only certain apps are of interest.
Undoubtedly, smartphone usage will continue to increase as
app developers continue to provide new apps to consumers
to satisfy their insatiable appetites. As a result, more and
more actors will become interested in fingerprinting and
identifying these apps for both benevolent and malevolent
reasons. By continuing research in this area we hope to gain
a better understanding of the privacy and security risks that
end users currently face. In this way, we can continue on
the path of helping to preserve privacy and security now and
into the future.
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Appendix

TABLE 9: List of apps in the AppScanner testing set. App details were obtained from the Google Play Store [25].

#| Package Name Number of Installs #| Package Name Number of Installs

1| com.amazon.kindle 100-500 million 56| com.hcg.cok.gp 10-50 million

2| com.dictionary 10-50 million 57| com.bigkraken.thelastwar 1-5 million

3| com.iconology.comics 1-5 million 58| com.machinezone.gow 10-50 million

4| com.google.android.gm 1-5 billion 59| com.myfitnesspal.android 10-50 million

5| com.imo.android.imoim 50-100 million 60| com.tayu.tau.pedometer 1-5 million

6| kik.android 50-100 million 61| com.runtastic.android 10-50 million

7| com.facebook.orca 500 million-1 billion 62| com.northpark.drinkwater 5-10 million

8| com.skype.raider 500 million-1 billion 63| info.androidz.horoscope 10-50 million

9| com.viber.voip 100-500 million 64| uk.co.dominos.android 1-5 million
10| com.whatsapp 1-5 billion 65| com.gumtree.android 1-5 million
11| com.yahoo.mobile.client.android.mail 100-500 million 66| com.justeat.app.uk 1-5 million
12| com.digidust.elokence.akinator.freemium 10-50 million 67| com.tinder 10-50 million
13| bbc.iplayer.android 10-50 million 68| com.mobilemotion.dubsmash 50-100 million
14| air.uk.co.bbc.android.mediaplayer 10-50 million 69| com.google.android.youtube 1-5 billion

15| com.imdb.mobile 50-100 million 70| com.mixradio.droid 1-5 million
16| air.ITVMobilePlayer 5-10 million 71| com.shazam.android 100-500 million
17| com.itv.loveislandapp 50,000-100,000 72| com.soundcloud.android 50-100 million
18| com.netflix.mediaclient 100-500 million 73| com.spotify.music 50-100 million
19| hu.tonuzaba.android 10-50 million 74| com.cnn.mobile.android.phone 10-50 million
20| com.bskyb.skygo 1-5 million 75| net.zedge.android 100-500 million
21| tv.twitch.android.app 1-5 million 76| com.instagram.layout 10-50 million
22| com.miniclip.agar.io 1-5 million 77| com.zentertain.photoeditor 50-100 million
23| com.yodol.crossyroad 10-50 million 78| com.google.android.apps.photos 1-5 million
24| com.imangi.templerun2 100-500 million 79| com.dropbox.android 100-500 million
25| com.joycity.warshipbattle 1-5 million 80| com.google.android.apps.inbox 5-10 million
26| com.prettysimple.criminalcaseandroid 10-50 million 81| com.microsoft.office.outlook 10-50 million
27| com.rovio.angrybirds 100-500 million 82| com.surpax.ledflashlight.panel 100-500 million
28| com.nordcurrent.canteenhd 5-10 million 83| com.amazon.mShop.android.shopping 10-50 million
29| com.umonistudio.tile 50-100 million 84| com.ebay.mobile 100-500 million
30| com.halfbrick.fruitninjafree 100-500 million 85| com.groupon 10-50 million
31| com.robtopx.geometryjumplite 50-100 million 86| com.shpock.android 5-10 million
32| com.boombit.RunningCircles 1-5 million 87| com.contextlogic.wish 10-50 million
33| com.boombit.Spider 5-10 million 88| com.badoo.mobile 50-100 million
34| com.kiloo.subwaysurf 100-500 million 89| com.facebook katana 1-5 billion
35| com.mobilityware.solitaire 50-100 million 90| com.google.android.apps.plus 1-5 billion
36| com.leftover.CoinDozer 50-100 million 91| com.instagram.android 500 million-1 billion
37| com.fivestargames.slots 5-10 million 92| com.chatous.pointblank 5-10 million
38| com.outplayentertainment.bubbleblaze 5-10 million 93| com.meetup 1-5 million
39| com.king.candycrushsaga 100-500 million 94| com.pinterest 50-100 million
40| com.king.candycrushsodasaga 100-500 million 95| com.snapchat.android 100-500 million
41| com.playfirst.cookingdashx 1-5 million 96| com.twitter.android 100-500 million
42| com.gameloft.android. ANMP.GloftDMHM | 100-500 million 97| com.qgihoo.security 100-500 million
43| air.com.puffballsunited.escapingtheprison 5-10 million 98| com.adobe.air 100-500 million
44| com.king.farmheroessaga 100-500 million 99| com.cleanmaster.mguard 100-500 million
45| com.outfit7.mytalkingtomfree 100-500 million 100| com.lazyswipe 50-100 million
46| com.jellybtn.cashkingmobile 10-50 million 101| com.avast.android.mobilesecurity 100-500 million
47| me.pou.app 100-500 million 102 | uk.co.nationalrail.google 1-5 million
48| com.king.alphabettysaga 10-50 million 103| com.thetrainline 1-5 million
49| com.ciegames.RacingRivals 10-50 million 104 | com.airbnb.android 5-10 million
50| com.igg.android.finalfable 1-5 million 105| com.booking 10-50 million
51| com.fungames.flightpilot 1-5 million 106 | com.joelapenna.foursquared 10-50 million
52| com.miniclip.eightballpool 50-100 million 107 | com.google.earth 100-500 million
53| com.BitofGame.MiniGolfRetro 1-5 million 108 | com.google.android.apps.maps 1-5 billion
54| com.supercell.boombeach 10-50 million 109| com.tripadvisor.tripadvisor 100-500 million
55| com.supercell.clashofclans 100-500 million 110| bbc.mobile.weather 5-10 million
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