
114 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 1, JANUARY 2016

Analyzing Android Encrypted Network
Traffic to Identify User Actions

Mauro Conti, Senior Member, IEEE, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo Verde

Abstract— Mobile devices can be maliciously exploited to
violate the privacy of people. In most attack scenarios, the
adversary takes the local or remote control of the mobile
device, by leveraging a vulnerability of the system, hence sending
back the collected information to some remote web service.
In this paper, we consider a different adversary, who does
not interact actively with the mobile device, but he is able to
eavesdrop the network traffic of the device from the network side
(e.g., controlling a Wi-Fi access point). The fact that the network
traffic is often encrypted makes the attack even more challenging.
In this paper, we investigate to what extent such an external
attacker can identify the specific actions that a user is performing
on her mobile apps. We design a system that achieves this goal
using advanced machine learning techniques. We built a complete
implementation of this system, and we also run a thorough set of
experiments, which show that our attack can achieve accuracy
and precision higher than 95%, for most of the considered
actions. We compared our solution with the three state-of-the-art
algorithms, and confirming that our system outperforms all these
direct competitors.

Index Terms— Cellular phones, information security, privacy.

I. INTRODUCTION

THE amount of sensitive data that users handle with
their mobile devices is truly staggering. People con-

tinuously carry these devices with them and use them for
daily communication activities, including not only voice calls
and SMS, but also emails and social network interactions.
A typical user gains access to her savings and checking
account by using her smartphone. She installs and uses several
apps to communicate with friends or acquaintances. Through

Manuscript received February 25, 2015; revised June 29, 2015 and
August 10, 2015; accepted August 22, 2015. Date of publication
September 14, 2015; date of current version October 30, 2015. This work was
supported in part by the TENACE PRIN Project under Grant 20103P34XC
through the Italian Ministry of Education, University and Research, in part
by the European Commission Directorate General Home Affairs through the
GAINS Project under Grant HOME/2013/CIPS/AG/4000005057, in part by
the European Commission through the H2020 SUNFISH Project under
Grant 644666, in part by the EU-India REACH Project under
Grant ICI+/2014/342-896, and in part by the Project entitled Tackling
Mobile Malware with Innovative Machine Learning Techniques through the
University of Padua. The work of M. Conti was supported by a Marie Curie
Fellowship through the European Commission under Grant PCIG11-GA-
2012-321980. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Jianying Zhou.

M. Conti and R. Spolaor are with the Dipartimento di Matematica,
Università di Padova, Padua 35122, Italy (e-mail: conti@math.unipd.it;
rspolaor@math.unipd.it).

L. V. Mancini and N. V. Verde are with the Dipartimento di
Informatica, Sapienza Università di Roma, Rome 00185, Italy (e-mail:
lvmancini@di.uniroma1.it; verde@di.uniroma1.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2478741

her smartphone, she gets information about sensitive topics
such as diseases, sexual or religious preferences, etc. As a
consequence, several concerns have been raised about the
capabilities of these portable devices to invade the privacy of
users actually becoming “tracking devices”. In this context, an
important aspect is related to the possibility of continuously
spying and locating an individual [3], [32], [35].

Solutions to identify and isolate malicious code running
on smartphones [31], [37], [42] as well as to protect against
attacks coming from the network [4], [11] might signifi-
cantly reduce current threats to user privacy. While people
become more familiar with mobile technologies and their
related privacy threats (also thanks to the attention raised
by the media, e.g., see the recent attention on NSA for
supposedly eavesdropping foreign governments leaders such as
Angela Merkel [35]), users have started adopting good
practices that better adapt to their privacy feeling and under-
standing. Unfortunately, we believe that even adopting such
good practices would not close the door to malicious adver-
saries willing to trace people. Indeed, several attacks may
violate the privacy of the user even when the adversary does
not physically or remotely control the user device. In this
paper, we consider a passive attacker that is able to sniff
the network traffic of the devices from the network side.
Obviously, if the network traffic is not encrypted, the task of
such an attacker is simple: he can analyze the payload and read
the content of each packet. However, many mobile apps use
the Secure Sockets Layer (SSL) – and its successor Transport
Layer Security (TLS) – as a building block for encrypted
communications. Even when such solutions are in place, the
adversary can still infer a significant amount of information
from the analysis of the properly encrypted network traffic. For
example, work leveraging analysis of encrypted traffic already
highlighted the possibility of understanding the apps a user
has installed on her device [36], or identify the presence of a
specific user within a network [38].

This work focuses on understanding whether the user profil-
ing made through analyzing encrypted traffic can be enhanced
to understand exactly what actions the user is doing on her
phone: as concrete examples, we aim at identifying actions
such as the user sending an email, receiving an email, browsing
someone profile on a social network, publishing a post or a
tweet. The underlying issue we leverage in our work is that
SSL and TLS protect the content of a packet, while they do not
prevent the detection of networks packets patterns that instead
may reveal some sensitive information about the user behavior.

An adversary may use our approach in several practical
ways to threaten the privacy of the user. In the following,

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CONTI et al.: ANALYZING ANDROID ENCRYPTED NETWORK TRAFFIC TO IDENTIFY USER ACTIONS 115

we report some possible scenarios:
• A censorship government may try to identify a dissident

who spreads anti-government propaganda using an anony-
mous social network account. Comparing the time of the
public posts with the time of the actions (inferred with
our method), the government can guess the identity of
that anonymous dissident.

• By tracing the actions performed by two users, and taking
into account the communication latency, an adversary
may guess (even if with some probability of error)
whether there is a communication between them. Multiple
observations could reduce the probability of errors.

• An adversary can build a behavioral profile of a target
victim based on the habits of the latter one (e.g., wake
up time, work time). For example, this could be used to
improve user fingerprinting methods, to infer the presence
of a particular user in a network [38], even when she
accesses the network with different types of devices.
a) Contributions: In this paper (which is an extended

version of the work in [12]), we propose a framework to
infer which particular actions the user executes on some app
installed on her mobile-phone. In particular, we assume that
the traffic is encrypted and the adversary eavesdrops (without
modifying them) the messages exchanged between the user’s
device and the web services that she uses.

Our framework analyzes the network communications
and leverages information available in TCP/IP packets
(like IP addresses and ports), together with other information
like the size, the direction (incoming/outgoing), and the timing.
By using an approach based on machine learning, each app
that is of interest is analyzed independently. To set up our
system, for each app we first pre-process a dataset of network
packets labeled with the user actions that originated them,
we cluster them in flow typologies that represent recurrent
network flows, and finally we analyze them in order to create
a training set that will be used to feed a classifier. The
trained classifier will then be able to classify new traffic traces
that have never been seen before. We run a thorough set of
experiments to evaluate our solution considering seven popular
apps: Facebook, Gmail, Twitter, Tumblr, Dropbox, Google+
and Evernote. The results show that it can achieve accuracy
and precision higher than 95%, for most of the considered
actions.

In the current version of the paper, we also add a discussion
(not present in [12]) about the key idea underneath our
traffic analysis approach. In particular, we examine in depth
the concept of network flow and the metric to evaluate the
similarity between them. We also report details of the machine
learning techniques we leverage in our method. Furthermore,
in addition to our previous work [12], we run a thorough com-
parison of our solution with three state of the art algorithms,
showing that our solution outperforms them in all of the cases.

b) Organization: The rest of this paper is organized as
follows. In Section II, we revise the state of the art around our
research topic. In Section III, we introduce some background
knowledge on machine learning and data mining tools used in
our work. In Section IV, we present our framework describing
all its different components. We present the evaluation of our

solution for identifying user actions in Section V, where we
compare with similar solutions as well. In Section VI, we
discuss about possible countermeasures against the proposed
attack. Finally, in Section VII we draw some conclusions and
point out ways in which this work can be further extended.

II. RELATED WORK

Our main claim in this paper is that network traffic analysis
and machine learning can be used to infer private information
about the user, i.e., the actions that she executes with her
mobile phone, even though the traffic is encrypted. To position
our contribution with respect to the state of the art, we
survey the works that belong to two main research areas that
focus on similar issues: privacy attacks via traffic analysis
(not necessarily focusing on mobile devices) and traffic analy-
sis of mobile devices (not necessarily focusing on privacy).

c) Privacy attacks via traffic analysis: In the literature,
several works proposed to track user activities on the
web by analyzing unencrypted HTTP requests and
responses [6], [7], [33]. With this analysis it was possible to
understand user actions inferring interests and habits. More
recently, Neasbitt et al. proposed ClickMiner [28], a tool that
reconstructs user-browser interactions. However, in recent
years, websites and social networks started to use SSL/TLS
encryption protocol, both for web and mobile services. This
means that communications between endpoints are encrypted
and this type of analysis cannot be performed anymore.

Different works surveyed possible attacks that can be per-
formed using traffic analysis assuming a very strong adversary
(e.g., a national security agency) which is able to observe all
communication links [30]. In [24], Liberatore and Levine eval-
uated the effectiveness of two traffic analysis techniques based
on naive Bayes and on Jaccard’s coefficient for identifying
encrypted HTTP streams. Such an attack was outperformed
by [22], where the authors presented a method that applies
common text mining techniques to the normalized frequency
distribution of observable IP packet sizes, obtaining a classifier
that correctly identifies up to 97% of requests. Similarly,
in [29] the authors presented a support vector machine classi-
fier that was able to correctly identify web pages, even when
the victim used both encryption and anonymization networks
such as Tor. Finally, Cai et al. [9] presented a web pages
fingerprinting attack and proved its effectiveness despite traffic
analysis countermeasures, such as HTTPOS [25].

Unfortunately, none of the aforementioned works was
designed for (or could easily be extended) to mobile devices.
In fact, all of them focus on web pages identification in
desktop environment (in particular, in desktop browsers),
where the generated HTTP traffic strictly depends on how web
pages are designed. Conversely, mobile users mostly access the
contents through the apps installed on their devices [20]. These
apps communicate with a service provider (e.g., Facebook)
through a set of APIs. An example of such differences between
desktop web browsers and mobile apps is the validation of SSL
certificates [11], [19].

Traffic analysis has been applied not only to HTTP but also
to other protocols. For example, Song et al. [34] prove that
several versions of SSH are not secure. In particular, they show

116 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 1, JANUARY 2016

that even very simple statistical techniques suffice to reveal
sensitive information such as login passwords. More impor-
tantly, the authors show that by using more advanced statistical
techniques on timing information collected from the network,
the eavesdropper can also learn significant information about
what users type in SSH sessions. SSH is not the only protocol
that has been target of such attacks. Another example is Voice
Over IP (VoIP). In [40], the authors show how the length
of encrypted VoIP packets can be used to identify spoken
phrases of a variable bit rate encoded call. Their work indicates
that a profile Hidden Markov Model trained using speaker-
and phrase-independent data can detect the presence of some
phrases within encrypted VoIP calls with recall and precision
exceeding 90%.

In [10], the authors show that despite encryption, web appli-
cations also suffer from side-channel leakages. The system
model considered is different from ours. In particular, their
focus is on web applications. On the contrary, we focus on
mobile applications. More importantly, the authors leverage
three fundamental features of web applications: stateful com-
munication; low entropy input; significant traffic distinction.
We believe that in most mobile applications two of these
features (stateful communication, low entropy input) are not
very useful to characterize user actions. In contrast to the work
in [10], we adopt a solution that only needs information about
packet sizes and their order.

d) Traffic analysis of mobile devices: Focusing on
mobile devices, traffic analysis has been successfully used
to detect information leaks [17], to profile users by their
set of installed apps [36], to find their position [5], and to
generate network profiles to identify Android apps in the
HTTP traffic [14]. Traffic analysis has also been used to under-
stand network traffic characteristics, with particular attention
to energy saving [18]. Stöber et al. [36] show that it is possible
to identify the set of apps installed on an Android device, by
eavesdropping the 3G/UMTS traffic that those apps generate.
Similarly, Dai et al. [14] introduce an automatic app profiler
that creates the network fingerprint of an Android app relying
on packet payload inspection. Unfortunately, their solution
is viable only for apps that do not use encrypted traffic.
In [43], Zhou et al. discovered three unexpected channels of
information leaks on Android: per-app data-usage statistics,
ARP information, and speaker status. In particular, the authors
used a suite of inference techniques to reveal a phone user’s
identity from the network-data consumption of Twitter app, by
also leveraging online resources such as tweets published by
Twitter. Unfortunately, the authors focused only on a specific
user action (i.e., send a tweet) without distinguish that action
from the other ones a user could perform. More recently,
Coull and Dyer in [13] presented a work similar to ours.
The authors inferred information analyzing payload lengths
of network packets produced by Apple iMessage and other
messaging apps on iOS and OSX. In particular, the purpose
of their work is to infer the OS version, user actions and
language used in instant messaging. The author focused on
five actions strictly related to instant messaging apps: start
writing, stop writing, message sending, attachment sending
and read notification. In this paper, we consider social network

and email service apps on Android. Those apps permit us
to investigate a wider set of actions than the one offered
by instant messaging apps. We believe that the interest from
researchers to aim at different targets (i.e., OS version, actions,
language) and the results obtained so far, underlines the
feasibility of those attacks, the relevance of this issue and the
importance to foster further research in this domain.

None of the work mentioned in this section aim at inferring
the actions a user performs on Android apps via encrypted
traffic analysis. The first and only work that achieved this goal
is our preliminary work [12], that is extended in the current
version of the manuscript.

III. MACHINE LEARNING AND DATA

MINING BACKGROUND

In this section, we briefly recall several machine learning
and data mining concepts that we use in our paper, while
we point the reader to appropriate references for a complete
introduction on those topics.

A. Dynamic Time Warping

Dynamic Time Warping (DTW) [27] is a useful method to
find alignments between two time-dependent sequences (also
referred as time series) which may vary in time or speed.
This method is also used to measure the distance or similarity
between time series.

Let us consider two sequences that represent two discrete
signals: X = (x1, . . . , xN) of length N ∈ N; and
Y = (y1, . . . , ym) of length M ∈ N. DTW uses a local
distance measure c : R × R → R≥0 to calculate a cost matrix
C ∈ R

N×M , s.t., each cell Ci, j reports the distance between
xi and y j . The goal is to find an alignment between X and Y
having minimal overall distance. Intuitively, such an optimal
alignment runs along a “valley” of low cost cells within the
cost matrix C . More formally, a warping path is defined as a
sequence p = (p1, . . . , pL) with pl = (nl , ml) ∈ [1 : N] ×
[1 : M], l ∈ [1 : L] satisfying the following three conditions:

1) Boundary condition: p1 = (1, 1) and pL = (N, M);
2) Monotonicity condition: n1 ≤ n2 ≤ . . . ≤ nM and m1 ≤

m2 ≤ . . . ≤ mL ;
3) Step size condition: pl+1 − pl = {(0, 1), (1, 0), (1, 1)}

for l ∈ [1 : L − 1].
The total cost of a warping path is calculated as the sum of all
the local distances of its elements. An optimal warping path
is a warping path p∗ having minimal total cost among all
possible working paths. The total cost of an optimal warping
path is also used as a distance measure between two sequences
X and Y . In this paper, we will indicate the cost of an optimal
warping path with DT W (X, Y).

Figure 1a shows an example of alignment between two
signals (indicated in the figure with Flow A and Flow B). The
arrows show the matched points which are given by the DTW
algorithm. The same two flows have been used to calculate
the heat matrix shown in Figure 1b. In this representation,
the color of a cell (i, j) represents the minimum distances to
reach cell (i, j) when starting from cell (0, 0). An optimal
warping path is then highlighted with a line that runs from
cell (0, 0) to cell (12, 13). It can be noticed that this warping

CONTI et al.: ANALYZING ANDROID ENCRYPTED NETWORK TRAFFIC TO IDENTIFY USER ACTIONS 117

Fig. 1. Example of DTW algorithm applied to two discrete signals: Flow A
and Flow B. (a) Alignment of two discrete signals. (b) Representation of an
optimal warping path.

path satisfies boundary, monotonicity, and step size conditions
reported above.

B. Supervised and Unsupervised Learning

Generally, machine learning approaches can be classified in
two classes: unsupervised and supervised algorithms. Unsu-
pervised learning algorithms try to find hidden structure in
unlabeled data. Since the examples given to the learner are
unlabeled, there is no error or reward signal to evaluate
a potential solution. On the contrary, supervised machine
learning algorithms learns from labeled instances or examples,
which are collected in the past and represent past experiences
in some real-world applications. They produce an inferred
model, which can be then used for mapping or classifying new
instances. An optimal scenario will allow for the algorithm to
correctly determine the class labels for unseen instances.

In this paper, we will use both supervised and unsupervised
learning algorithms. We use supervised learning by applying
an ensemble classifier that is called Random Forest [8]. The
main principle behind ensemble methods is that a group of
“weak learners” can be combined together to form a “strong
learner”. Random forest leverages a standard machine learning
technique called “decision tree”, which, in ensemble terms,
corresponds to the weak learner. In practice, it combines
together the results of several decision trees trained with
different portions of the training dataset and different subsets
of features. More details about the Random Forest classifier
can be found in [8].

We use unsupervised learning by applying a clustering algo-
rithm called hierarchical clustering. Hierarchical clustering is
a cluster analysis method which seeks to build a hierarchy
of clusters. This clustering method has the distinct advantage
that any valid measure of distance can be used. In fact, the
observations themselves are not required: all that is used is a
matrix of distances.

In the following we will use a type of hierarchical clustering
that is called agglomerative: each observation starts in its
own cluster, and pairs of clusters are merged as one moves
up the hierarchy. In order to decide which clusters should
be combined, a metric (a measure of distance between pairs
of observations) and a linkage criterion are required. Since we
will clusterize time-dependent sequences, we will use the total
cost of an optimal warping path as distance metric. As for
the linkage criterion, that determines the distance between

sets of observations as a function of the pairwise distances
between observations, we will use the average distance, that
is defined as:

d(u, v) =
∑

1≤i≤n
1≤ j≤m

d(u[i], v[j])
|u| ∗ |v| ,

where d() is a distance function, and u and v are two
clusters of n and m elements, respectively. More details about
Hierarchical clustering can be found in [21].

IV. OUR FRAMEWORK

Our framework is logically composed by two components:
the “pre-processor” and the “traffic classifier”. The former has
the task of executing all the pre-processing steps that allow us
to model the network traffic into data that the traffic classifier
can easily handle. The latter executes the actual classification
task. Before using the traffic classifier, it has to be trained with
labeled traffic data that we are able to generate by artificially
stimulating the analyzed apps. We detail the steps executed
by the pre-processor in Section IV-A, while in Section IV-B,
we describe the methodology used to generate our training
dataset, as well as the procedure used to classify user actions.

A. Network Traffic Pre-Processing Steps

Mobile apps generally rely on SSL/TLS to securely commu-
nicate with peers. These protocols are built on the top of the
TCP/IP suite. The TCP layer receives encrypted data from the
above layer, it divides data into chunks if the packets exceeds a
give size. Then, for each chunk it adds a TCP header creating
a TCP segment. Each TCP segment is encapsulated into an
Internet Protocol (IP) datagram, and exchanged with peers.
Since TCP packets do not include a session identifier, both
endpoints identify a TCP session using the client’s IP address
and the port number.

A fundamental entity considered in this paper is the traffic
flow: with this term we indicate a time ordered sequence of
TCP packets exchanged between two peers during a single
TCP session. The pre-processor takes in input the network
traffic, it builds the network flows that represent that network
traffic, and it generates a set of time series: (i) a time series
is obtained by considering the bytes transported by incoming
packets only; (ii) another one is obtained by considering bytes
transported by outgoing packets only; (iii) a third one is
obtained by combining (ordered by time) bytes transported
by both incoming and outgoing packets. Hence, we use this
set of time series as an abstract representation of a connection
between two peers. Note that additional time series may be
added to this set for example by considering other parameters
such as the time-gap between different packets. For the sake
of simplicity, in the following we will only consider the first
three types of time series mentioned above.

Table I reports an example of time series generated from
three network flows, while Figure 2 graphically represents
these flows through a cumulative chart. The lower side of
the chart represents incoming traffic, while the upper side
represents outgoing traffic. This is only one of the possible
representations, and it shows that the “shapes” of these three

118 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 1, JANUARY 2016

TABLE I

EXAMPLE OF TIME SERIES GENERATED FROM THREE NETWORK FLOWS.

VALUES WITHIN SQUARE BRACKETS REPRESENT THE AMOUNT OF

BYTES EXCHANGED PER PACKET: NEGATIVE VALUES IN

COMPLETE TIME SERIES INDICATE INCOMING BYTES,

WHILE POSITIVE VALUES INDICATE OUTGOING BYTES

Fig. 2. Representation of flows time series.

network flows are quite different. Intuitively, our classification
approach tries to learn the “shape” of network flows related
to particular user actions, and successively it aims to identify
user actions by classifying the “shape” of previously unseen
network flows.

Before generating for each flow the corresponding set of
time series, a few pre-processing steps have to be performed.
In particular: 1) we apply a domain filtering to select only
flows belonging to the analyzed app; 2) we filter the remaining
flows, in order to delete packets that may degrade the precision
of our approach (i.e., we filter out ACK and retransmitted
packets); 3) we limit the length of the generated time series.
For each flow, the result of these three pre-processing steps
will be a set of time series that will be passed to the next
component of the framework, which is the traffic classifier.
In the following, we will detail the three pre-processing steps.

e) Domain filtering: The network traffic generated by an
application is generally directed toward a back-end infrastruc-
ture. The back-end infrastructures might be composed of a
single server, or a set of servers. The set of servers might
even be behind a load balancer. Since we analyze each
app independently, we need to make sure that traffic generated
from apps other than the considered one (or traffic generated
by the OS) does not interfere with the analysis. Different
methods can be used in order to identify the app that generated
each network flows. The destination IP address is a trivial
discriminating parameter. However, in case of a load balanced
back-end, we should know all the individual IP addresses that

can be involved in the communication. The same happens
when the back-end is composed of several components such as
different web services, databases, etc. To overcome this prob-
lem we use another strategy: we take into consideration for
further analysis only the flows which destination IP addresses
owners have been clearly identified as related to the considered
app. In the implementation of our framework, we leverage the
WHOIS protocol for this purpose, but we want to highlight
that this is only one of the possible ways. Business and other
context information may be used in order to perform the
domain filtering. We also take into consideration the traffic
related to third party services (such as Akamai or Amazon)
that are indeed used by several applications [39].

f) Packets filtering: Due to network congestion, traf-
fic load balancing, or other unpredictable network behavior,
IP packets can be lost, duplicated, or delivered out of order.
TCP detects these problems, hence requesting retransmission
of lost data, and reordering out-of-order data. As a results,
several TCP packets that do not carry data, may hinder the
analysis process. In the data exchange phase, for example,
the receiver sends a packet with the ACK flag set to notify
the correct reception of a chunk of data. These ACK packets
are transmitted in asynchronous mode so they are affected by
many factors related to round trip time of the connection link.
The order of the received packets may hinder the evaluation of
the similarity between two network flows. For this reason, we
filter out all packets retransmissions, as well as packets marked
with the ACK flag. Note that the metric that we will use in
order to measure similarity between flows (see Section IV-B)
will mitigate the consequences of missing packets. We also
filter out other packets that do not bring any additional
information helpful in characterizing flows. In particular,
we filter out the three way handshake executed to open a
TCP connection, and the packets exchanged to close it.

g) Timeout and packets interval: Two different tech-
niques are used to limit the length of the generated time
series: a timeout mechanism and the specification of a packets
interval. The timeout mechanism is used to terminate the flows
that did not receive any new packet since 4.5 seconds. Indeed,
it has been proved experimentally that 95% of all packets
arrive at most 4.43 seconds after their predecessors [36]. The
packets interval specifies the first and the last packet to be
considered. For example, considering a flow f composed by
l packets, and the interval [x, y] with x ≤ y and y ≤ l, the
corresponding time series will be composed by y − x + 1
values that report the bytes of the xth to the yth packet. This
simple mechanism allows us to focus on particular portions
of the flow. The first part, for example, is often the more
significant. In the experimental part, we report the results for
different configurations of packets intervals, showing that the
best configuration is app dependent.

B. Traffic Classification Details

Since we use a supervised learning approach, it is necessary
to create a labeled dataset that describes the user actions that
we want to classify. The labeled dataset is used to train the
traffic classifier component allowing it to correctly classify
previously unseen data instances. In order to build the training

CONTI et al.: ANALYZING ANDROID ENCRYPTED NETWORK TRAFFIC TO IDENTIFY USER ACTIONS 119

dataset, we simulate a series of user actions by interacting with
the app to analyze. For each performed action we intercept
and label the flows generated after the execution of the action
itself. For each app that we analyze we focus on actions that
are significant for that particular app.

In most cases, a single user action generates a set of different
flows (i.e., not just a single one). Furthermore, different user
actions may generate different sets of flows. Our classification
method is based on the detection of the sets of flows that are
distinctive of a particular user action. In order to elicit these
distinctive sets of flows, we build clusters of flows by using the
agglomerative clustering approach described in Section III-B.
Similar flows will be grouped together in the same cluster,
while dissimilar flows will be assigned to different clusters.
The average distance is used as linkage criterion, while the
computation of the distance between two flows combines the
distances of the corresponding time series. Supposing that each
flow fi is decomposed into a set of n time series {T i

1 , . . . , T i
n },

the distance between fi and f j is defined as:

dist (fi , f j) =
n∑

k=1

wk × DT W (T i
k , T j

k),

where wk is a weight assigned to the particular time series.
Weights can be assigned in such a way as to give more
importance to some type of time series with respect to others.
For example, it is possible to give more weight to the time
series that represent incoming packets, and less weight to those
that represent outgoing packets.

In order to reduce the computational burden of the sub-
sequent classification, a leader is elected for each cluster.
Leaders will be the representative flows of their clusters. Given
a cluster C containing the flows { f1, . . . , fn}, the leader is
elected by selecting the flow fi that has the minimum overall
distance from the other members of the cluster, that is:

arg min
fi∈C

⎛

⎝
n∑

j=1

dist (fi , f j)

⎞

⎠.

Clustering is executed on the set of flows that will be used to
build the training dataset. In particular, after performing the
clustering the training dataset will be composed as follows.
The user actions will be the instances of the datasets, while
the class of each instance is a label representing the action.
We will have one integer feature for each cluster identified
through the agglomerative clustering. The value of each feature
is determined by analyzing the flows related to an action.
Each flow f captured after the execution of an action will be
assigned to the cluster that minimizes the distance between f
and the leader of the cluster. The kth feature will therefore
indicate the number of flows that have been assigned to the
cluster Ck after the execution of that action. For example,
for the action send mail, the kth feature will be equal to 2
if there are 2 flows labeled with send mail assigned to the
cluster Ck .

Finally, we execute the classification with the Random
Forest algorithm. The main idea behind the overall approach
is that different actions will “trigger” different sets of clusters.

The classification algorithm will therefore learn which are
these sets, and will be able to correctly determine the class
labels for unseen instances.

V. EXPERIMENTAL RESULTS

In order to assess the performance of our proposal, we
considered several widespread apps that have different pur-
poses: Gmail, Facebook, Twitter, Tumblr, Dropbox, Google+
and Evernote. We selected these apps because of their high
popularity [1]. Indeed, Gmail is one of the largest email
services and its Android app has over one billion downloads.
On the other hand, Facebook and Twitter are not only the
most popular Online Social Networks [2], but they also had a
leading role in the Arab spring and the Istanbul’s Taksim Gezi
Park protests (when Turkish government blocked Twitter).
Tumblr is a widely used micro-blogging platform owned by
Yahoo! Inc., while Dropbox is one of the most used cloud
storage services. Google+ is the social network and social
layer for Google services owned and operated by Google
Inc. Finally, Evernote is an app designed for note-taking and
archiving. Dropbox, Google+ and Evernote. Given the wide
set of apps we considered, we believe that the results of our
analysis also hold for any other app that generates network
traffic as a consequence of a user action. Note that most of the
apps make use of a back-end service to implement the logic
of the service, and thus they must generate network traffic
as a consequence of almost any user interaction. To collect
the network traffic related to different user actions, we set
up a controlled environment. In this section we present the
elements that compose this environment (Section V-A), the
methodology used to collect the data (Section V-B), and the
results of the evaluation (Section V-C).

A. Hardware and Network Configuration

For the evaluation of our solution, we used a Galaxy
Nexus (GT-I9250) smartphone, running the Android 4.1.2
(Jelly bean) operative system.

We enabled the “Android Debug” option in order to allow
the usage of the ADB (Android Debug Bridge) interface via
USB cable. We used a Wi-Fi access point (U.S. Robotics
USR808054) to provide wireless connectivity to the mobile
phone. Finally, we used a server (Intel Pentium Processor dual
core E5400 2.7GHz with 4 GB DDR2 RAM) with two network
cards running Ubuntu Server 11.04 LTS to route the traffic
from the access point to the Internet, and vice versa.

To eavesdrop network packets flowing through the server,
we used Wireshark software. From a Wireshark capture file,
we created a comma separated file (csv), where each row
describes a packet captured from the access point’s inter-
face. For every packet we reported source and destination
IP addresses, ports, size in bytes and time in seconds from
Unix epoch,1 protocol type and TCP/IP flags. Since the
payload is not relevant to our analysis, it has been omitted.
This data has then been used to generate the time series as
explained in Section IV-A.

100:00:00 UTC, 01 January 1970.

120 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 1, JANUARY 2016

B. Dataset Collection and Analysis

For our study we considered seven apps installed from
the official Android market: Gmail v4.7.2, Facebook v3.8,
Twitter v4.1.10, Tumblr v3.8.6.08, Dropbox v2.4.9.00,
Google+ v5.3.0.91034052 and Evernote v7.0.2. For the social
apps, we created ten accounts that have been divided in two
different categories of users: “active” and “passive” users.
“Active” users simulated the behavior of users that actively use
the app by sending posts, email, tweets, surfing the various
menus, etc. “Passive” users simulated the behavior of users
that passively use the app, just by receiving messages or
posts. The accounts of both passive and active users have been
configured in such a way as to have several friends/followers
within the group. We avoided configuring the accounts with
actual friends or followers, in order to avoid interference due
to notifications of external users activities that were not under
our control.

To reach a particular target, a user may have to perform
several actions in a precise order. An action could be simple
(e.g., a tap on a button, a swipe, or a selection of edit box),
or complex (e.g., type a text, which is a sequence of keyboard
inputs). For example, a user has to perform three actions
in a precise sequence to post a message on her Facebook
wall. He has to be sure that the Facebook app shows the
“user’s wall”, then she has to tap on the “write a post”
button (1), fill the edit box with some text (2), and finally
tap on the “post” button (3). It is important to highlight that
we do not use static text to fill in text boxes, but the text
is randomly selected from a large set of sentences. A script
submits the sequence of actions to the mobile phone through
the ADB commands, and it captures the network traffic that
is generated. The script also records the execution time of
each action. By using the recorded execution time of each
action, it is then possible to label the flows extracted from
the network traffic with the user action that produced it. For
each app, we choose a set of actions that are more sensitive
than others from user privacy point of view (e.g., send an
email or a message, for the reasons we report in Section I).
The list of these actions is reported in Table III. We underline
that we do not ignore other user actions, but we label them
as other. In this way we have several benefits [26]: we
obtain a greater representation of data in terms of variety and
variance of examples; we reduce the chances of overfitting;
we improve the performance of the classifier on relevant user
actions.

We collected and labeled the traffic generated by
220 sequences of actions for each app, where a sequence is
composed by 50 types of actions (for a total of 11660 examples
of actions for Gmail, 6600 for Twitter, 10120 for Facebook,
16070 for Tumblr, 15104 for Dropbox, 7813 for Google+ and
8740 for Evernote). The user action examples in the dataset
were divided into a training set and a test set. We use the
training set to train the classifier, while we use the test set to
evaluate its accuracy. We underline that to build the test set we
used accounts that have not been used to create the training
set. By using different accounts to generate the training and
the test set, it is possible to assure that the results of the

TABLE II

WEIGHTS SET CONFIGURATIONS AND PACKETS

INTERVALS FOR THE CONSIDERED APPS

Fig. 3. Statistical distribution of the length of the complete time series
extracted from the network traffic. First and third quartile are represented as
the left and right side of the notched box. The notch of the box represents
the median value. Lines that extend horizontally from the boxes indicate the
2nd percentile (left) and the 98th percentile (right).

classification do not depend on the specific accounts that have
been analyzed.

As explained in Section IV-A, each network flow is modeled
as a set of time series. Table II reports the weights and the
intervals for several configurations (“Conf.” in the table) used
to limit the length of the time series generated by each app.
We used different weights configurations, and we selected
the packets intervals by analyzing the statistical length of the
flows. Figure 3 reports the statistical distribution of the length
of the flows app by app. The first quartile, the median and the
third quartile are highlighted by using a notched box plot.
In particular, the median value and the third quartile have
been used as thresholds to limit the maximum length of the
generated time series. For the Twitter app, in some cases we
set the interval in such a way to focus only on the last three
or four packets. Indeed, we noticed that the first part of the
time series was identical for each flow.

To confirm this statement we report in
Figure 4a and Figure 4b the graphical representation of
the flows that occur when executing three different actions in
Gmail and Twitter respectively. Comparing the two figures,
it can be noticed that the shapes of the actions drastically

CONTI et al.: ANALYZING ANDROID ENCRYPTED NETWORK TRAFFIC TO IDENTIFY USER ACTIONS 121

Fig. 4. Comparison of three different Gmail and Twitter actions. It can be
noticed that Twitter actions are more similar than Gmail actions, indeed their
shapes are largely overlapped. (a) Representation of three different Gmail
actions. (b) Representation of three different Twitter actions.

change for Gmail, while they are almost unvaried for Twitter.
As a matter of fact, different Twitter actions just differ in their
last packets. Nevertheless, our approach reaches very good
performance for this app too. In our experiments, we used the
Random forest classifier implemented by the Python library
scikit-learn.2 The classifier is trained using 40 estimators
(or weak learners). Each estimator consists of a decision tree
without any restrictions on its depth limit. The number of
features for each estimator is equal to the square root of the
maximum number of available features.

C. Classification Performance

Before considering the classification of the user actions,
it is worth discussing how to choose the number of clusters
that should be used. In order to establish a reasonable value
for this parameter, we used a validation dataset to study the
accuracy of the classification when varying the number of
clusters. Figure 5 reports the achieved results. For each app,
we therefore considered the number of clusters that maximized
the accuracy, in terms of averaged F-measure. In the following,
we report the results of the classification app by app, and
we discuss the average accuracy reached when detecting each
sensitive user action. In Table III, we report detailed results for
the precision, the recall and the F-measure metrics achieved
by the best configuration of all the analyzed apps. Since we
are space constrained, we report the corresponding confusion
matrices only for some of the analyzed apps.

1) Facebook: We focused on seven different actions that
may be sensitive when using the Facebook app. On average,
the F-measure is equal to 99%, with a precision and a recall of
99% and 98% respectively. Performance reached with different
configurations of weights and packets intervals constraints

2http://scikit-learn.org/

Fig. 5. Classification accuracy over number of clusters.

Fig. 6. Classification accuracy of Facebook, Gmail and Twitter actions.
(a) Classification accuracy of the Facebook actions. (b) Classification accuracy
of the Gmail actions. (c) Classification accuracy of the Twitter actions.

are reported in Figure 6a. For each action at least one of
the configurations exceeds 94% of accuracy, while the worst
performing is always higher than 74%.

Table III reports precision, recall and F-measure reached by
using Configuration 3. We noticed that all the actions have a
precision higher 96%. The recall is higher than 95% for all
the actions apart from the open user profile, that reaches 91%.
In fact, we realized that this particular action is classified as
other in 9% of the examples, as we can see from the confusion
matrix reported in Figure 7a.

122 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 1, JANUARY 2016

TABLE III

DESCRIPTION OF USER ACTIONS AND CLASSIFICATION

PERFORMANCE FOR THE CONSIDERED APPS

2) Gmail: We analyzed four specific user actions of the
Gmail app: send mail, reply button, open chats and send
reply. Figure 6a shows the classification accuracy that has
been reached for each configuration of weights and packet
interval constraints. We observe that we are able to distinguish

with high accuracy the action of sending of a new mail, from
that of replying to a previously received message, as well as
the tap on the reply button. The open chats action is instead
more difficult to distinguish. Table III reports precision, recall
and F-measure for Configuration 1. We can observe that the
action open chats (that allows to read past chats) achieves a
low precision but a high recall. Analyzing the confusion matrix
depicted in Figure 7b it is possible to notice that 16% of other
actions are wrongly classified as open chats. This is the reason
of such a low precision.

3) Twitter: During the analysis we noticed that Twitter
actions may be more difficult to classify than Gmail and
Facebook actions. Indeed, different Twitter actions generate
similar time series that have a large portion in common.
Only the last three or four packets of each time series show
some difference. Nevertheless, we have been able to reach
outstanding results for this app as well. In particular, we
focus on six specific user actions: refresh home, open contacts,
tweet/message, open messages, open twitter, open tweets.
Performance reached for all the analyzed configurations are
reported in Figure 6c. For each action at least one of the
configurations exceeds 96% of accuracy, while the worst
configuration has an accuracy in any case higher than 91%.
The best performing configuration is Configuration 1, that on
average, reached an F-measure value equal to 97%, with a pre-
cision and a recall of 98% and 97% respectively (see Table III).
The action open twitter has accuracy and recall equal to 100%,
independently of the Configuration set used for the clustering
phase. As a consequence, none of the examples of the test set
have been wrongly classified. Figure 7c reports the confusion
matrix obtained by considering the Twitter actions. Three of
the six analyzed actions are correctly classified in more than
the 99% of the cases, while the other three actions, that are
open contacts, open messages and open tweets, are correctly
classified in more than 95% of the cases.

4) Tumblr: We analyzed ten different user actions of the
Tumblr app (see Table III). On average precision, recall and
F-measure is equal to 99%. Precision is always
greater than 97% for the individual actions, while recall
is greater than 96% in all the cases but one: home page.

5) Dropbox: As for Dropbox, we analyzed eight different
user actions. On average, we reached a precision of 95% and
a recall of 92%. Only for two individual actions, we reached
precision or recall lower than 80%. This is the case of folder
creation or delete file. However, the average F-measure is still
greater than 92%.

6) Google+: We analyzed ten different user actions of the
Google+ app (see Table III). On average precision, recall and
F-measure are equal to 90%, 94%, 92% respectively. Precision
values range from 75% to 100% for the individual actions,
while recall is greater than 84% in all the cases. The actions
delete post and send comment have both precision and recall
equal to 100%.

7) Evernote: We analyzed six different user actions of the
Evernote app. Evernote is definitely the app that achieved
better performance among those we analyzed. Indeed, we
achieved an average precision, recall and F-measure equal
to 100%.

CONTI et al.: ANALYZING ANDROID ENCRYPTED NETWORK TRAFFIC TO IDENTIFY USER ACTIONS 123

Fig. 7. Confusion matrices of Facebook, Gmail and Twitter actions. (a) Facebook actions confusion matrix for Configuration 3. (b) Gmail actions confusion
matrix for Configuration 1. (c) Twitter actions confusion matrix for Configuration 1.

D. Comparison With Other Methods

To confirm the validity of the proposed approach, we
compared the results achieved by our solution with three traffic
analysis techniques. The solutions we compare with have been
proposed to face a problem similar to the one we consider,
i.e., the identification of the websites the user is retrieving
under the cover of an encrypted tunnel. Two of them are
due to Liberatore and Levine [24]. They proposed two meth-
ods that are based on naive Bayes and Jaccard’s coefficient
respectively. The third one is due to Herrmann et al. [22].
They applied common text mining techniques to the frequency
distribution of observable IP packet sizes. Since all these
algorithms require several parameters to be tuned, we analyzed
different configuration and in the following we report only
the results for the best configuration that we found. Figure 8
reports the results of the comparison. Because we are space
constrained, we report the results of the comparison only for
some of the apps we analyzed. The other apps do not show a
significantly different behavior. In particular, the performance
of our solution is always comparable or significantly better
than the performance of the other proposed approaches.

In particular, Figure 8a shows the averaged F-measure for
Facebook, Gmail and Twitter. The averaged F-measure is the
average of the F-measures reached by classifying the actions
considered for that specific app. It can be noticed that in
all the cases our classifier outperforms the other approaches.
Figures 8b, 8c and 8d show the results for each app more
in depth. In particular, each figure compares the F-measures
reached when classifying the individual actions of that app.
As it turns out, our classifier significantly outperforms the
other three approaches in the majority of cases, while the
results are comparable in the remaining cases. This indicates
a higher level of reliability with respect to the other
approaches.

In contrast with the other algorithms, our solution uses
more advanced machine learning techniques such as ensemble
methods, Dynamic Time Warping, and hierarchical clustering.
Furthermore, our solution uses information such as the packet
order that is not considered in the other cases. Finally, our
approach is resilient to packet retransmissions that might be
significant in mobile apps. We believe that these features make

our classifier more reliable than its competitors, especially for
the mobile scenario. However, we want to highlight that our
solution may also be competitive in desktop scenarios.

VI. POSSIBLE COUNTERMEASURES AND LIMITATIONS

Users and service providers might believe that their two
parties communications are secure if they use the right encryp-
tion and authentication mechanisms. Unfortunately, current
secure communication mechanisms limit their traffic encryp-
tion actions to the syntax of the transmitted data. The semantic
of the communication is not protected in any way [23]. For this
reason, it has been possible for example to develop classifiers
for TLS/SSL encrypted traffic that are able to discriminate
between applications.

The contribution of this paper was to investigate to which
extent it is feasible to identify the specific actions that a user
is doing on her mobile device, by simply eavesdropping the
device’s network traffic. While it is out of the scope of the
paper to investigate possible countermeasures to the proposed
attack, we discuss in the following some related issues.

The common belief is that simple padding techniques may
be effective against traffic analysis approaches. However, it
has to be considered that padding countermeasures are already
standardized in TLS, explicitly to “frustrate attacks on a
protocol that are based on analysis of the lengths of exchanged
messages” [15]. Nevertheless, our attack worked against TLS
encrypted traffic. More advanced techniques have been pro-
posed in the literature, such as traffic morphing and direct
target sampling [40], [41]. However, a recent result showed
that none of the existing countermeasures are effective [16].

The intuition is that coarse information is unlikely to be
hidden efficiently, and the analysis of these features may still
allow an accurate analysis. On the light of these results, we
believe it is not trivial to propose effective countermeasures to
the attack we showed in this paper. Indeed, it is the intention
of the authors to highlight a problem that is becoming even
more alarming after the revelation about the mass surveillance
programs that are nowadays adopted by governments and
nation states.

In our opinion, the main limitation of our approach is
related the usage of supervised learning algorithms. It has to
be considered that this technique is generally more efficient

124 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 1, JANUARY 2016

Fig. 8. Comparison of our solution with Herrmann Multinomial Naive
Bayes (MultiNB) [22], Liberatore Naive Bayes (NB) [24], and Jaccard
(Jaccard) [24]. (a) Comparison of averaged F-measures. (b) Comparison
of performance classification of Facebook actions. (c) Comparison of per-
formance classification of Gmail actions. (d) Comparison of performance
classification of Twitter actions.

than the unsupervised learning since it takes advantage of
the knowledge of each class of interest. However, it has two
main drawbacks: (1) the training dataset has to be labeled
with the intervention of a human, (2) it is not possible to
recognize classes of events that have not been used during
the training phase. We mitigated the first limitation using an
automatic approach to label the network traces collected for
the training phase (see Section V-B for the details). However,
the second limitation cannot be addressed without revising the
entire approach. Furthermore, it has to be noticed that even
applying an unsupervised learning technique the selection of
the actions that could originate more privacy concerns should
always be evaluated by a human.

VII. CONCLUSIONS

The framework proposed in this paper is able to analyze
encrypted network traffic and to infer which particular actions
the user executed on some apps installed on her mobile-phone.
We demonstrated that despite the use of SSL/TLS, our traffic
analysis approach is an effective tool that an eavesdropper
can leverage to undermine the privacy of mobile users. With
this tool an adversary may easily learn habits of the target
users. The adversary may aggregate data of thousands of users
in order to gain some commercial or intelligence advantage
against some competitor. In addition, a powerful attacker
such as a Government, could use these insights in order to
de-anonimize user actions that may be of particular interest.
We hope that this work will shed light on the possible attacks
that may undermine the user privacy, and that it will stimulate
researchers to work on efficient countermeasures that can also
be adopted on mobile devices. These countermeasures may
require a kind of trade-off between power efficiency and the
required privacy level.

REFERENCES

[1] Androidrank. [Online]. Available: http://www.androidrank.org/, accessed
Apr. 1, 2015.

[2] (Jan. 2014). Top 15 Most Popular Social Networking Sites. [Online].
Available: http://www.ebizmba.com/articles/social-networking-websites

[3] R. Abir. (Mar. 2014). iphone 5s Can Track User’s Every Move Even After
the Battery Dies. [Online]. Available: http://guardianlv.com/2014/03/
iphone-5s-can-track-users-every-move-even-after-the-battery-dies/

[4] C. A. Ardagna, M. Conti, M. Leone, and J. Stefa, “An anonymous end-
to-end communication protocol for mobile cloud environments,” IEEE
Trans. Services Comput., vol. 7, no. 3, pp. 373–386, Jul./Sep. 2014.

[5] G. Ateniese, B. Hitaj, L. V. Mancini, N. V. Verde, and A. Villani, “No
place to hide that bytes won’t reveal: Sniffing location-based encrypted
traffic to track a user’s position,” in Proc. NSS, 2015.

[6] R. Atterer, M. Wnuk, and A. Schmidt, “Knowing the user’s every
move: User activity tracking for website usability evaluation and implicit
interaction,” in Proc. ACM WWW, 2006, pp. 203–212.

[7] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing
user navigation and interactions in online social networks,” Inf. Sci.,
vol. 195, pp. 1–24, Jul. 2012.

[8] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[9] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proc. ACM
CCS, 2012, pp. 605–616.

[10] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in Web
applications: A reality today, a challenge tomorrow,” in Proc. IEEE SP,
May 2010, pp. 191–206.

[11] M. Conti, N. Dragoni, and S. Gottardo, “MITHYS: Mind the hand you
shake—Protecting mobile devices from SSL usage vulnerabilities,” in
Security and Trust Management. New York, NY, USA: Springer-Verlag,
2013.

[12] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you hear
me knocking: Identification of user actions on Android apps via traffic
analysis,” in Proc. ACM CODASPY, 2015, pp. 297–304.

[13] S. E. Coull and K. P. Dyer, “Traffic analysis of encrypted messaging
services: Apple iMessage and beyond,” ACM SIGCOMM Comput.
Commun. Rev., 2014, pp. 5–11.

[14] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“NetworkProfiler: Towards automatic fingerprinting of Android apps,”
in Proc. IEEE INFOCOM, Apr. 2013, pp. 809–817.

[15] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, document RFC 5246, Aug. 2008.

[16] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail,” in
Proc. IEEE SP, May 2012, pp. 332–346.

[17] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. USENIX OSDI,
2010, pp. 1–6.

CONTI et al.: ANALYZING ANDROID ENCRYPTED NETWORK TRAFFIC TO IDENTIFY USER ACTIONS 125

[18] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proc. ACM IMC, 2010,
pp. 281–287.

[19] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating
SSL certificates in non-browser software,” in Proc. ACM CCS, 2012,
pp. 38–49.

[20] Y. Go, D. F. Kune, S. Woo, K. Park, and Y. Kim, “Towards accurate
accounting of cellular data for TCP retransmission,” in Proc. ACM
HotMobile, 2013, pp. 1–2.

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. New York, NY, USA: Springer-Verlag, 2009.

[22] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
Attacking popular privacy enhancing technologies with the multinomial
Naïve-Bayes classifier,” in Proc. ACM CCSW, 2009, pp. 31–42.

[23] B. Krishnamurthy, “Privacy and online social networks: Can colorless
green ideas sleep furiously?” IEEE Security Privacy, vol. 11, no. 3,
pp. 14–20, May/Jun. 2013.

[24] M. Liberatore and B. N. Levine, “Inferring the source of encrypted
HTTP connections,” in Proc. ACM CCS, 2006, pp. 255–263.

[25] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci, “HTTPOS: Sealing information leaks with browser-side
obfuscation of encrypted flows,” in Proc. NDSS, 2011, pp. 1–21.

[26] T. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[27] M. Müller, Information Retrieval for Music and Motion. New York, NY,
USA: Springer-Verlag, 2007.

[28] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms, “ClickMiner: Towards
forensic reconstruction of user-browser interactions from network
traces,” in Proc. ACM CCS, 2014, pp. 1244–1255.

[29] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proc. ACM
WPES, 2011, pp. 103–114.

[30] J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues,
and open problems,” in Designing Privacy Enhancing Technologies.
New York, NY, USA: Springer-Verlag, 2001.

[31] B. P. S. Rocha, M. Conti, S. Etalle, and B. Crispo, “Hybrid static-runtime
information flow and declassification enforcement,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 8, pp. 1294–1305, Aug. 2013.

[32] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundcomber: A stealthy and context-aware sound trojan for smart-
phones,” in Proc. NDSS, 2011, pp. 1–17.

[33] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Under-
standing online social network usage from a network perspective,” in
Proc. ACM IMC, 2009, pp. 35–48.

[34] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. USENIX SSYM, 2001, pp. 1–17.

[35] C. Staff. (Oct. 2014). Germany: U.S. Might Have Monitored
Merkel’s Phone. [Online]. Available: http://edition.cnn.com/2013/10/23/
world/europe/germany-us-merkel-phone-monitoring/

[36] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync
you are? Smartphone fingerprinting via application behaviour,” in Proc.
ACM WiSec, 2013, pp. 7–12.

[37] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Commun. Surveys Tuts., vol. 16, no. 2, pp. 961–987, May 2013.

[38] N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and A. Spognardi,
“No NAT’d user left behind: Fingerprinting users behind NAT from
NetFlow records alone,” in Proc. IEEE ICDCS, Jun./Jul. 2014,
pp. 218–227.

[39] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid: Multi-
layer profiling of Android applications,” in Proc. ACM Mobicom, 2012,
pp. 137–148.

[40] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted VoIP
conversations,” in Proc. IEEE SP, May 2008, pp. 35–49.

[41] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis,” in Proc. NDSS, 2009,
pp. 1–14.

[42] Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo, and E. Fernandes,
“MOSES: Supporting and enforcing security profiles on smartphones,”
IEEE Trans. Dependable Secure Comput., vol. 11, no. 3, pp. 211–223,
May/Jun. 2014.

[43] X. Zhou et al., “Identity, location, disease and more: Inferring your
secrets from Android public resources,” in Proc. ACM CCS, 2013,
pp. 1017–1028.

Mauro Conti (SM’14) received the Ph.D. degree
from the Sapienza University of Rome, Italy, in
2009. He is currently an Associate Professor with the
University of Padua, Italy. After his Ph.D., he was
a Postdoctoral Researcher with Vrije Universiteit
Amsterdam, The Netherlands. In 2011, he joined the
University of Padua, where he became an Associate
Professor in 2015. He was a Visiting Researcher
with GMU (2008), UCLA (2010), UCI (2012, 2013,
and 2014), and TU Darmstadt (2013). He received
a Marie Curie Fellowship (2012) from the European

Commission, and a Fellowship from the German DAAD (2013). His main
research interest is in the area of security and privacy. In this area, he has
authored over 100 papers in topmost international peer-reviewed journals and
conference. He is an Associate Editor of several journals, including the IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS. He was the Program Chair
of TRUST 2015, and the General Chair of SecureComm 2012 and ACM
SACMAT 2013.

Luigi Vincenzo Mancini received the Ph.D. degree
in computer science from the University of
Newcastle, U.K., in 1989. He is currently a Full
Professor with the University of Rome La Sapienza,
where he has been the Vice Dean of the Faculty of
Ingegneria dell’Informazione, Informatica e Statis-
tica since 2013. He has authored over 100 scientific
papers in international conferences and journals, and
has received more than 4000 citations. His current
research interests include cloud computing security,
network and information security, and computer

privacy. He has served on the program committees of several international
conferences, among which are the ACM Conference on Computer and
Communication Security, the ACM Symposium on Access Control Models
and Technology, the European Symposium on Research in Computer Security,
and the Financial Cryptography and Data Security Conference. He is the
Founder of the two master’s degree programs in information and network
security with the University of Rome La Sapienza, and the Laboratory
of Information and Communication Security. He participated in numerous
national and international research projects in the area of security and privacy,
and in particular, he is the Technical Leader of the SUNFISH project funded
by the EC Horizon 2020 research and innovation program.

Riccardo Spolaor received the master’s degree in
computer science from the University of Padua,
Italy, in 2014, with a thesis on smartphone privacy
attack infering user information via traffic analysis.
His master’s thesis has received the fifth place prize
at the CLUSIT Best Thesis Award in 2015. He is
currently pursuing the Ph.D. degree in brain, mind
and computer science with the University of Padua,
under the supervision of Prof. M. Conti. His main
research interests are usability and security issues
on smartphones. In particular, he investigates how

to apply machine learning techniques to infer user information and to build
countermeasures.

Nino Vincenzo Verde received the Ph.D. degree in
mathematics from the University of Roma Tre in
2011, and the master’s degree in computer science
from the Sapienza University of Rome in 2007.
He is currently a Postdoctoral Researcher with the
Department of Computer Science, Sapienza Uni-
versity of Rome. He is with the Research Cen-
ter of Cyber Intelligence and Information Security,
Sapienza. His main interests include digital forensic,
critical infrastructure protection, information war-
fare, role-based access control, data mining, and

machine learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

